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Introducing the essential Handbook for Physics,
Chemistry, and Maths, designed for students from
classes 9to12 following the CBSE curriculum.

This concise booklet contains all the crucial formulas
and equations necessary to excel in these subjects. From
Newton’s laws to chemical reactions to algebraic
expressions, every key concept is succinctly summarized
for easy reference and understanding. With this
handbook in hand, students can confidently tackle
problems and excel in their academic pursuits from

middle school to higher secondary levels.



Physics




Physics formula
Kinematics

Physical
quantity/Phenomenon

Formula/Graph Diagram/Remarks

Average speed

When particle travels distances s,
s;andss,with speeds vi,voand v

StiptE T
(8,8,8, )
Total distance travelled LB
Total time taken When particle travels with speeds v, v,and

vzduring time intervals ti, t,and t3

i!lt] + L:fff + ['-_in!l:i T

r‘. T I;l T ri + Fa4
lia As - ds It is the tangent drawn over an x-t graph at
Instantenous speed a0 AL di a particular time.

Average velocity

Average velocity and average speed are
same when a body moves along the
straight line with uniform velocity.

Total displacement
Total time taken

. Change in velocity (Av) When the sign of accelaration and velocity
Average acceleration Time interval (A are same then only it speeds up.
W Vi
Vap =V = Vg A 5
Vap =Va * Vg va v
A B
[:'__ﬁ' stz
Relative Velocity N /
3 - AN
tyg =4l + Ug— 20 g oo b J \ I."JI'I-I'
2 Vag \ [5
tan f = Wi 107 0h - i
& Woa — Wy Cios B F||"I .,“I'LI“-
=vg O Vi

Displacement-Time Graph

Slope of displacement-time graph= average

For a stationary A constant velocity.
body velocity
Displacament :lis;;lyl,l'muw'l
d
,.f”
ok
a0 Timea
Tirma
A constant A constant
acceleration retardation
Displacement Diephaeiment
T
d
|'.r
.;}I—! Time




e The area under the curve is equal

A constant A constant displacement of the object in the
velocity acceleration given time period.
Viekacity Yelocity

e Slope of velocity-time graph =
average acceleration.

o "

Velocity-Time Graph L] o
Tima
Increasing Decreasing
acceleration acceleration
Wealooiby

WelnG iy

The area under the curve is equal to the

Constant Constant change in the velocity of the object in the
acceleration increasing given time period.
Acceleration acceleration
Apceteration

Acceleration-Time Graph :

o Tima o Tifie

Constant decreasing acceleration
Aocelamation

v =t + at Motion under gravity is also uniformly
1 o accelerated motion.
. 8 =t + — at v=u-gt
Uniformly accelerated 2
motion I T 1
ut =u" + adas _ 2
y=ut- Egi
a .
H”_u-l--;l,ﬁn—[} 9 a
A o=y - Zgjr
2u sin O U sin G
[ p——
[+ ]
&

o
usn- 0
Ffaws — 4

2g
Projectile Motion R n?ein 2o A ucosh C
=
y=xﬁnﬂ——7§L?—f
2u” cos” B

X
—Ktﬂnﬂi']— ﬁ}




_2usina
gcosp
Y
Incline plane projection B
2u® gin o cos{o + B)
Range= gcos® p ®
. d =
Time to cross= ——
vsin@ e LL LR EE R EEEEE S PP T
. — a _p y

River-Boat Problem Min. Time to cross =— And drift in

v 4 d e 1

this case=u.—
To cross in shortest path : vcos6 = | 4 . . 8 .
w Cosh u
u
Average angular velocity dél, & Or
B, - 6, AB
mg-.; = t pl t1 o At {Perpendicular
2 to plane of paper
Instantaneous angular velocity <] gwecied outwards

Circular Motion

de
dt

M=

Average angular acceleration
My — iy Am

u = i —
i t; -, At

Instantaneous angular acceleration

din din

o= E =mﬁ

Radial or centripetal acceleration

2

v

— = ofr
r

a:

r

Linear speed

U=rm

Tangential acceleration:
At=rot

for ACW rotation)

</

Vs

Net acceleration
[..g )

a =/ ap + ap

L= %

tor o =
L& P

Uniformly accelarated
motion in a circle

W = ty + ol

5] =1||n(,.f + 1:!:

-
w- = my + 28

For retardation a will be taken as negative.




NEWTON'S LAWS OF MOTION

Newton’s second law

mdwv
F = = ma

When Mass remains constant

Impulse

Force * Time = Change in
momentum

Impulse during period t1
tot.

Area under the F-t curve
fromtitot,

| AREA UNDER
| THE GRAAPH |

.
=
L]

Rocket is an example of variable mass

Thrust on the rocket at any F=—u Ff IW following law of conservation of
instant i momentum.
= cd
max p‘sN a '

%] ' i

< fS < fsmaa I.E :fﬂ‘: '|'I.r.|1|.rl:

Max. Static friction and @'@" ' i

Kinetic friction [T ! i

i NN
& : -
f.=n, N : :
: - »
Applied Force

<. ry

Angle of Friction(0)

It is the angle which the resultant
of the force of limiting friction and
the normal reaction(N) makes with

the direction of N. u=tan@

o - - -

= [=]

B

Angle of Repose(a)

It is the minimum angle of
inclination of a plane with the
horizontal, such that a body placed
on it, just begins to slide down.
p=tana

Acceleration on a rough =g(sin B - 2 B 'F'/‘_f
incline plane a=g {b]_ll W Cos } mg sin @
]
net pulling force —s d
Common acceleration and - total mass : =
contact normal forces P =) Fi ottt Fy {;_;F:.

{m; + my + my)




(my + mg) F

By =
1
{m; +m,+ my)
m. I’
F,= 3
(m; + my+my)
—d
= F Ry Ry By
(my + mgy + my) b +
Common acceleration and T, =F T T
i 1
tension Ty =(my + my)a =—fm'2 + my) F y .‘-% 1}% 4 ——sf
() + Bl + Hig)
My M my
Ty=mya= = mF

() # Hig + Fig)

Common acceleration and
tension

_m; —my)
(my + my) -
2m,m,

(m, + my)

mg
| g=—ThE
Common acceleration and (my + my)
tension = mymsy g
(my, + my)

_(my sin 6 - m, sin 6,) g

f,;fc\p

Common acceleration and m, + m,
tension s Buﬁ{;/
T- mymy (sin H] + sanlz}g 'mgsnl} — ¥ mygsin &
my 4 m, ' '5'“
“centripetal force” means “force towards
_ e . the centre”. Its not a new kind of force. This
Centripetal Force = = mro force must originate from some external

source such as gravitation, tension, friction,

coulomb force, etc.

Circular Turning of Roads:

By friction only :

Prnx = -\..'Ij.l..?'_if

By bending of road only :

v =.lrgtan @




. 2 mv?

Radius of curvature R=s — = —
1 F,
=0
Normal reaction of road on I'I"I"u’z M :
a concave bridge N=mgcos O+ — :
r 1]
e v goncave
mg
Normal reaction on a 2
mv

convex bridge

N =mg cos 0 —

Skidding of an object on a
rotating platform

Maximum and minimum
safe speed on a banked
frictional road

[rgu+tane)]"
mas {'1—“1:3”3}_

112

v < |® (tanf-) |
- (14+ptan6)

o
~ |

_r_..-"l ¥ | Sind

i

Min. Speed to complete
the vertical loop and
tension at highest and
lowest point

At A=,/5gr

At C=,/gr, speed at C=,/3gr
Tension at A= bmg
Tension at C= zero

Conical pendulum

Tcosf=mg
Tsin6=me'r

. o, |LCOSH
Timeperiod= °| .

i figsd poimion
L Llsfmn._-ur,n




WORK , POWER AND ENERGY

F F
Work done by constant W= ES cosd 1 B
force
— § —
F
dw=F.dx _
Work d b iabl :
ork done by a variable Total workdone= area under F vs x g -
force 2 WiErea
curve
¥y Xy o
D placemen
Relation between -
momentum and kinetic P =vV2mK

energy

Potential energy

uz-ﬂﬁ-dr‘:-w

W=work done by conservative force

Conservative forces

Potential energies are defined only for
conservative forces as work done by these
forces is independent of path.

Ex. Gravitational, spring and electric forces.

Work-energy theorem

WE+ w‘-.[,+ WFE = j'l{

If only conservative forces do work then,
Ur-Ui=-W=-[K-Kj)
UJ.-'-l- K}'= U, +Kj
We can’t apply the principle of conservation
of energy in presence of non-conservative
forces. The work-energy theorem is still
valid even in the presence of non-
conservative forces.

Gravitational Potential

Always negative as the gravitational force is

mgh. L
Energy g always attractive in nature.
)
. Tuming E
| por E
5 (1]
1 ?"-, i
_KXZ | i
Elastic Potential Energy 2 k I
L
;:Il .:RCI_ o ™
1 Gq Positive as well as negative as the electric
Electric Potential Energy = o 122 force is repulsive as well as attractive in
ey W nature.
Avg. Power W Represents how fast or slow work is being
Paw = 7 done.
Instantaneous power = . dS = ; =
p_FdS _-dS _-
dt dt




Equilibrium(Translational)

, U

dlr

— = or —=1)

dar

Stable equilibrium (U=min.)

d

—— =positive

dar®

Unstable equilibrium ( U=max)

d*U

= = Negative

ar-

Neutral equilibrium

dr

dr®

=0

Linatable
eyl b

Slakda

acuilibeiim

CENTRE OF MASS

Centre of mass of a system s rn1r'1_1_ rr!;,f; L — F Mg hy
of 'n' discrete particles: feom = myamy . +m,
Centre of mass of a jm:lm _{:-‘ﬂﬂ‘l .[mm -
continuous mass o = e ¥om = Jnm i ‘de
distribution !'
COM of two particle COM lies closer to the heavier mass. L S I
system m..._.—.l-gml-' m
L L
mi,+m mi,+m,
¥t
L]
— R -
A hemispherical shell ¥y £ x =0
A —CER Trrs
o
"
]
A solid hemisphere 3R
Hlemss
GI
b
COM of Rectangular plate = b L I
=7 — = — o.m.
e 2 YT 2 T |
¥
JDH— x|
¥
. lar ol h
A triangular plate v, = 3

q

4




A circular cone (solid) h
y=7 "
4
A circular cone (hollow) h
¥y =35
A semi-circular disc y = ;_?' ¥ =0
Tk
n
I
A semi-circular ring R
= X =0

Coefficient of restitution

(e)zvseparaﬁan

Vapproach

(a) e =1 =Velocity of separation = Velocity
of approach = Kinetic Energy is conserved
= Elastic collision.

(b) e = 0= Velocity of separation=0=
Kinetic Energy is not conserved = Perfectly
Inelastic collision.

(c) 0 < e <1 = Velocity of separation <
Velocity of approach = Kinetic Energy is not
conserved = Inelastic collision.

Perfectly Elastic One
Dimensional Collision

_my —my) uy + 2maty

U
(my + m;)

(Mo — My ) Ba + 25

(my + my)

iy o ¥ ¥
o 00— 00— 00—
m my Py my
Beforecolision 1+ Afer callision

Vertical inelastic collision

= Iﬁ — ﬁzg?}h = {};;
Up 11.' 2gh, \'hn

Height covered by the body after
nth rebound

-
h, =e " h,

Two Dimensional (elastic)
or Oblique Collision

my it = Myt COS & + Maly CO8 i

0=m,v, sina - m,u, sinfl

If mi=m;then a+3=90




RIGID BODY DYNAMICS

Vacos61 = Vg cosO;

VSl

Condition for being a rigid
body

MOI:
For many particles (system

of particles) Tl e
o 1

For a continuous object = Idmrz | fa g

- :

£y

Ilf

Perpendicular Axis -—;":a
Theorem [Only applicable (when object is in x-y plane) ffx; ! “\
to plane lamina (that =1 +1 | A B
means for 2-D objects z x0Ty / / !
only)].

Parallel Axis Theorem .
(Applicable to any type of L=, Md M

B
|
|
1

object) ::J

2 M
£ MR?
Solid Sphere 3 A

i

Hollow 3 MR 2
Sphere R

Moment of Inertia of some ‘L
symmetrical objects .
v ) Ring MRE (:_

Disc —_—
2 Gt




T M
Hollow h
cylinder MR? l
il -
z
Solid cylinder MR~
2
ML2 :IEID" M.L
Thin rod R
ML2 o°
Thin rod 12 ==
o] B
.
2 — ¢ —
Square Plate L = 1 = 1y = "'152 E F
A \\c
f 2]
| = M@® +b%) /i
Square Plate ST m ey s 1
1= MK? g5
Radius of gyration 'r"r_r.i: ; r.z iy EIEREE

Torque

Torque about a point:
—¥ e s

t=rxF
For arigid body: t=lo.

Relation between 't' & 'L'

_aL
" dt

For rotational eqilibrum t=0




Angular momentum

about a point:
L = rpsing

For arigid body
L=lw

Conservation of Angular
Momentum

Loy, =1, o,

Impulse of Torque

L
J :}”‘ vdt=L, -1

Rotational K.E.

K=x

2

p
To®

Total K.E.

%MchE + -; |,:,-!-,lnn2

- mgsint _ gsin B

IT 2
m+—= 14 K
re ,.:
Motion of a Body Rolling o
Down Without Slipping on v=| <
an Inclined Plane 1 K
R
I
Ir 4 !
|2¢] 1+ e |
, r
Time = |\
gaing
= "!'_' -
Work done by torque W= .[:r, vdo
Power delivered by torque P=1t-m
GRAVITATION
i f, FoFof
Unwt_arsa_l Law of . Smangz: i Gmymy m, 12 Fag Ty Iy m,
Gravitation F. =—= Mz = — —r—w
12 r 21 r2
o ) F GM Gravitational field on earth surface is
Gravitational Field = m = 2 acceleration due to gravity
dv
Gravitational potential V== oM E=-—
r dr
Effect of Altitude HTQ’
When h is comparable to R h
_— . G,
Variation Of Acceleration g, = N .
Due To Gravity nT Ry +h)

g [1 2h | when h =< R,
R, |

13 (X




Effect of depth

d |
9,=9 [1 "R LA o
. . \\“‘q__d-r"/r
North poke
Effect of the surface of Earth _’I- -—;
Rly—tf=-mmmemnien 5
gpﬂ-le = gequamr "Iu%
§\:|Lr;h poke
._F u : :-:.:_ﬂ "
s s |
Effect of the Earth’s rotation e a
2 2 . ——
g=g—-Ro cos™ A \ Y,

T
F

Minimum velocity to put an object in

V.= i any circular orbit.
ORBITAL VELOCITY ® IRy +h)
=
h<<R_ thenv, = /gR,
i'g_[‘;_ﬂ_.«,i' — Minimum velocity to be imparted such
Ve = V T =+ 2gR that Kinetic energy of a body becomes
Escape velocity equal to its potential energy.
-GMm GMm Negative total energy indicates the
u= r K.E.= T or satellite is bounded to the earth.
E f a Satelli g=— Vel
tellit i e
nergy of a Satellite 2R,
Binding Energy
BF -+ GMm
2r
Gravitational Potential - GMm Always negative as force is always
Energy between any two U=c— attractive in nature.
r

point masses

Kepler's Laws

Law of orbit: Every planet revolves
around the sun in an elliptical orbit and
sun is at its one focus.

Law of area: Areal velocity = constant

aA L
= poristnni

dt  2m

Law of periods:
2

= = constant

PROPERTIES OF MATTER

Stress

restoringforce
area of the body

The magnitude of restoring force is
taken equal to that of applied force.

14 [




change in configuration

Strain = : -
original configuration ;
Lor.1g|tud AL
inal — arfii
. L B
strain l
F
i i "
Volume AV y—s -
strain W ‘ .
N F l- i
T,
gl 1 e
Shear _ T
Strain b= v
FA"----—‘I /’.’ J//’
Hooke’s Law Stress = Strain Hooke’s law is valid within elastic
limit.
Young's modulus Bulk Modulus
_ FIA FV
Elastic ~ALJL K=~ ALV
Modulus = L
Modulus of Rigidity/Shear Modulus)
F
'|"I =
A
; [l N\
. _ Lateral strain - ARIR FOT T R .
Poisson’s Ratio — —= — 0-an n :
Longitudinal strain Al e :
Il,-l fedf [N}
1 K-bulk modulus
Compressibility =
K
VA If a spring is cut two equal parts then
4 . .
Force Constant of Wire TPt effectlve sprlng sonstant of each part
i will be 2k as k is inversely

proportional to its length.

Potential Energy per unit
volume

1
2 (stress x strain)

Thermal stress

?LI r"LH

Y-young’s modulus
a-coefficient of linear expansion
AB-change in temperature




Pressure Exerted by the
Liquid

=hpg

Hydrostatic Paradox

Py = p}- =P:=DPpt Pgh
w, W, # W,

Liquid placed in elevator

p = ph [g + a]

4p
tan 6 = ——
Free surface of liquid in g
horizontal acceleration fag
h1 — hz = T
4
Free surface of liquid in h f w4r?
case of rotating cylinder 2 29 " 2g

Equation of Continuity

avy = azvs

£t
] [} iy
D+ :—12 pu~ + pgh = constant
Bernoulli’s Theorem p-pressure e E
v-speed of liquid A by
h-height o
v =+/2gh
Torricelli’s theorem — e
(speed of efflux) $= [2LH —h)
V=
S =.4hi{H = h)




Venturimeter

Newton’s Law of viscosity

3
A FFTFFTTITITITIIITT f,:" FFFFFTFITTIrT B

Fisgl misrfmcs

Stoke’s Law

F=6nanrv

Applicable for spherical objects falling
through a viscous medium.
n-coefficient of viscosity
r-radius of the ball
v-speed of the object

Terminal velocity

2 r’(p-o)g

wims"y

Tarmml risl welodity
=

o L] Fal H 40 £ t'ﬂ\]

Reynold’s Number

v.pr
n

R<2000 — streamlined flow
When 2000 < R< 3000, the flow is
variable between streamlined and

turbulent.
K > 3000 turbulent flow

Relative density

Density of substance
Density of water at 4°C

Weight of substance 1 air

Lozs of weight in water

Laws of Floatation

(a) If W>w, then body will sink to
the bottom of the liquid.
(b) If W< w, then body will float
partially submerged in the liquid.
(c) If W=w, then body will float in
liquid if its whole volume is just
immersed in the liquid.

W=weight of the body
w= weight of displaced water

Poiseuille’s Formula (rate
of flow)

x pr
8 nl

p-pressure difference
r-radius of the tube
n-coefficient of viscosity
I-length of the tube.

Surface tension

Total force on either of the imaginary lin
Length of the line (1)

Surface energy or work done

Increase surface area




Force of Surface Tension
on Different Shape

Thin ring of radius r

F=2rlr+r)$§

Circular plate or disc of radius r

F=2mw-S

Liquid is only in contact with
circumference of the disc.

Square frame of side a

F=2=8-S

F

Square plate of side a

F = 4aS

Hollow disc of inner radius r1 and outer
radius r2

F=2nr(r+05)-S

Wire of length |

F=2-1-S

F

Work Done in Blowing a
Liquid Drop

W =8 4n(rf - r°)

S=surface tension
ri -initial radius
r2= final radius

Work Done in Blowing a
Soap Bubble.

W =8.8r(ri —-nr%)

S=surface tension
ri-initial radius
r,= final radius

Work Done in Splitting a
Bigger Drop into n Smaller
Droplets

r=R-(n)y¥?

W =4anS(nr® — R*)
=AnSR* (nY* = 1)

S=surface tension
R -initial radius
r= final radius

Coalescence of Drops

R =n"%p,
AU =8 - 4An(nr® = R

=AnSrin(l —n—"")

S=surface tension
r -initial radius
R= final radius

Excess pressure

Inside a bubble
48

R

Inside the drop
25

I




Inside air bubble in a liquid

28
R
e PR o
Radius r of common 1 1 1 e i } \1'
interface = |l\ o -y |
ron o LW #

Capillary Rise

28 cosB  r

h= .

Fpa a
If a glass of insufficient length is dipped
in water then water rises till the top and

changes its radius of curvature such that

(water does not overflow)

E h, = R;h,
Angle of Angle of Angle of
Contact < Contact = Contact
90° 90° >90°
e Meniscus Meniscus Meniscus
shape- shape- shape-
Concave Plane Convex
- - A R C
e Capillary No effect Capillary M
Variation in angle of action - action-
contact Liquid Liquid falls
rises
e Stick/wet Does not Does not
S wet wet
[
° Fa = jal_; Fa = :l::f Fa= \,."5 Glass

THERMAL PROPERTIES OF MATTER

Temperature scales

A

a2 K

=73

1LO0

1=0 1

818

C, F and K are respectively
temperatures a in Celsius, Fahrenheit
and Kelvin scale

Linear Expansion

I =6 (1 + o AL)

a=coefficient of linear expansion.At=
change in temperature.

Variation of time period
of pendulum

T -

ST

T < T- clock-fast : time-gain T' > T -
clock slow : time-loss

Superficial Expansion

A=A, (1+PAD

B=coefficient of superficial
expansion.At= change in
temperature.

Volume expansion

Vo=V, (1+7AD

y=coefficient of superficial

expansion.At= change in

temperature.
apPry=1:2:3

Expansion of Liquids

Coefficient of Apparent expansion
Ya= Apparent Increase in volume
a

original volume= original volume

Coefficient of real expansion
v Rea Increase in volume
r

original volume=x original volume

Tl' =Tu +Tg




Variation of Density
with Temperature

p'=p(l —yAT)

y=coefficient of superficial
expansion.At= change in temperature

Q Depends on nature of the substances.
Specific heat = —
m.AT
. ACY Process dependent quantity for gases.
Molar specific heat =
n.AT
Heat required to change the phase of
Latent heat & = mlL a substance at a constant
temperature.
. m.s my=water equivalent
Water equivalent Sw Sw=sp. Heat of water
. dQ dT
Thermal Conduction —_— = —aam
dt dx
Ty =Ta
N | R i Electric resistance
Thermal Resistance =i 1
KA R=p,
Series When A1 =A;=As=...
Leg £y  F3
Series and parallel K. = k. T
combination of rod ea K Ky
Parallel Whenli=1l,=13=...
H’.m "ﬂ"m =K A +K A + ...
o AU A black body is a body which absorbs
AUl oL E = AB AL 100% incident energy neither reflects

Emissivity

o= E of abody at T temp.
"E ofablack body at T temp.

nor transmits. Only can emit
radiations at some higher
temperature.

Wein’s Displacement
law

A . T=Db

m
Am-the wavelength at which maximum
emission takes place
T- absolute temperature of the body

Stefan Boltzmann law

Rate of heat loss=
ech (T'—T.)

T-temperature of the body
To-temperture of the body

KTG & THERMODYNAMICS

Pressure of a gas p=lp Vims2
3
Speed of gas [ap o
p g o ap ".,-f__m >y > v :
molecules i Ve

- ||'31-<:T
m

V= \(-‘%.‘?T
mm

———

T

v = 2K
m

Maxwell’s law of

Total K.E. of the molecule = 1/2 f KT

f=degrees of freedom

20 [




equipartition of
energy

K=Boltzman constant
T=absolute temperature.

Internal energy of n
moles gas

Ratio of C, and C, Degrees of f du i G 2
U=_—RT =—= - R| ===
Gas freedom 2 © dT =G+ G f
3 3 5
M tomi 3(t — RT =R =~ R 1.67
onhoatomic (trans) > > 5
Diatomic
. . 3(trans)+2 = 5 7
=T o R 1
&Tr.|atom|c (rot) = o > 4
(linear)
Triatomic (non | 3(trans)+3 .
- 3RT ; 1.33
linear) (rot) 3R Ak
T-absolute tem.
Mean Free Path A = kT o- diameter
\IE T Gzp p-pressure
k-Boltzmann constant
Cpo=Molar specific heat at constant
Mayer’s equation Cp—Cv=R pressure

C.=Molar specific heat at constant
volume

Work Done _[:" pdV — Area ABCDA i
F) Lo el
=
e Its conservation of energy in
thermodynamics.
First Law of e workdone(dw)- is taken

Thermodynamics

dQ =dlU + dW

positive when the gas
expands and negative when it
gets compressed.

Process Work done | Change Sp.
in heat ——
internal ——
energy groTTTTTTT
Thermodynamic Isobaric RT-T) | ncwaT Co
processes e
Heat -
Isochoric Zero . Cv \
supplied i L
nR(T - T, e
Adiabatic {_r 3 ! = Zero :
Wy -
Isothermal | nRTIog, Zero Infinity "
1"III e
- - - e
Adiabatic relations PV — TV {_ _ = Constant
M|xtgre of non- nhy + nghy nC,, +nC,, n1l:p_ FRly +.
reacting gases Ay + N n,+n; 0G MG
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SIMPLE HARMONIC MOTION

S.H.M.

F=—kx

SHM occurs when the body is in stable
equilibrium only.

Displacement in SHM

Y=a sinot (body starts vibrating from mean
position)

Y=a coswt(body starts vibrating from extreme

-
N
—u = |,
R
»

S
S

position)
where -
_ 2 —
m= T .
Speed V= ﬂn"lﬁ.z = " t
. 2
Acceleration a=—mx +t

Kinetic Energy Potential Energy
1 - 3 e - o
> Kk (AT — x®) = i E =N+ PE
S al g
Energy in SHM ;¢ 1] Pvential eneny
Total Mechanical Energy I
3 . : ey
5 KAz s
¥ ;T%
m QOOOCO000 ] =
T=2mr.— A
K
m »
T=2T—
) =]
m mym, . "
i T=2n,/— U= ¥
SPRING-Block SYSTEM K {m_l 3 mﬂ}
Series Combination
= +
”keq 1/k, + 1/k,
Parallel combination
Mo = KT Ry
- In a horizontally
T — 9 I'i accelerated vehicle Oscillates in uniform electric

SIMPLE PENDULUM

oo [ 8
TTZ.".I jPemm——
VWla™+g7)

field(acting upwards)
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Oscillates in a fluid

In a vehicle sliding down I
— L : |
[ an inclined plane T'=2nr -
=2 a ! la{—qﬁ
Vip-pylg T=2n \ & cos B ]kl i m
F HI/G-\";
T=2n v
COMPOUND mge
PENDULUM / [ =1, + m 2

PHYSICAL PENDULUM

L=distance between center of mass and point
of suspension

TORSIONAL - [ C=torsional constant

T=2n '||||I Fis
PENDULUM <

WAVES
[vp M= Molar mass
Speed of sound V o _ VERT
VM

Speed of Transverse T T=tension
wave AT p=mass per unit length

Simple Harmonic

. 2T
y=a sin = (vt — x)

e Waves travelling along negative X axis=sign
of xand t are same

Wave eqn. A e Waves travelling along positive X axis=sign
of x and t are opposite

Wave velocity & w0 g in m=angular frequency
Angular wave number Fz 3 k=propagation constant/angular wave number
Particle velocity Vemven Max particle velocity (at mean position)=nA

P g Min particle velocity(at extreme position)=zero

Far At a particular time between particle at
A Ax . L
Y different position
Variation of phase - - - —
i For a particular particle (at a fixed position)
Ag=—" At between a time interval

p= volume mass density
w=angular frequency

1 =
| i '|F="""'".A_1'
ntensity 5 e A=amplitude
V=volume
¥, = A sin (ot — k,x)
Rarer to denser
yi =A, sin (ot — k,X) ky — ks
Reflection & y A = i
refraction of Wave Y, =— A, sin (ot + KX) Ky +K;
Denser to rarer 2"1
i _ A= [
¥y = Ay sin(mt —kax) I ky +ks

¥ = A, sin (ob + kyx)

Stationary or Standing
Waves eqgn.

5 il LN 2mx .
Y =a4ad 81N — 08
T

A

Distance between two successive nodes
and antinodes=’;1

Distance between one node and next
antinode = %

In a loop particles vibrate in same phase

but with different amplitudes
23 [




I
1** mode il e
(15t harmonic or fundamental) VA
II I.
¥ 1 A
.,
Vibrations of strings WM
- N,
fixed at both ends & 27 mode 1T x.,
. I. &
open organ pipe (2" harmonic or first overtone) S
W
s ",

39 mode(3"® harmonic or 2"
overtone)

15t mode(1°%t harmonic or
String free at one end fundamental)
& close organ pipe

2" mode(3 harmonic or first
overtone)

Resonance Tube Uv=nh=2n ”‘.{ _ f]}

Number of beats heard per second | Beats are heared when the frequency difference

Beat frequenc . . .
quency = n1- n; = difference of frequencies | is not more than 10 Hz.

ELECTROSTATICS
Kl q,q.l By —isinsans +——Fy
Coulomb force re - i
el —
Fis By
e —
- — =
Dielectric £, =— E = E, B i
constant or £g K . E_"' "
relative Eq ’ _ i 2 Eu.
permittivity —=-E
—_— 4| —=
Electric field e=f Force per unit test charge.
intensity . g=test charge
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Properties of
electric field
lines
.A -'r T:
Ex =
= Es > Ex
Vo = (Wop dam Work done by an external agent to bring a unit
P T —— e . . . . .
. . ositive charge from infinity to a point without
Electric Potential = Amce -0 P narg ¥ toa point wil
accelerating the charge. Potential at infinity can be
taken zero.
; 7 B Potential decreases in the direction of electric field.
Poter.mal B dV V=V, = - jEr_lr
Gradient | dr )} : +
The electric flux= "
8= fE-r!‘E,i: S!'- LR
I
Gauss's law g=Tn B~ T, =ty
Ey Ey L
e
' ]
304
28+
I 20+
Point . LCI? i v g 3184
charge Ir r e
@A
05 b 15 2@ 35 a0 %
¥ .
=
Electric field and +|
potential due to 1
some ) oy | =
symmetrical Line A = ||I:-'.r.=-2|{|[ 4|‘|.:;‘H_|[#:| i e .
objects charge e g ok
M
-
e )| Cansssian surface
Pt
RN T
Thin Il M e zlr::_
sheet o = gEu'E N e J e
I::;,'ff
L~
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Charge £ = K _ KQ
dring | "= TR, s R — dECosd
"= 4R +x dE
Conduc 0, - EF
ting . b=V ===l =1y MK ot £
n L e F
sheet ¥ (hog | A
E
Hollow ol IO
conduc kQ g KQ o §
ting/ b r E=0 |
non- !
conduc 0 R p
ting v
/solid
conduc KQ |
ting E=0 R Y=
sphere i —
oy " ¥
Electrostatic 1 g44q Negative for opposite charges and positive
potential energy An &y for similarcharges.
1 E=Electric field due to any configuration.
Energy Density 5 cE®
E, . —_—
Dinole Axial ZKP _I i : 3 R P -g-‘----_-q
T & i
P point r? daggr . d
E ial KP
qutprla _SL Zero
point r
General KP | 2. _ Peosd
. —y143c08" b D R
point Pt dme,r
ooEing
Dipole placed in the direction of electric
field=P.E becomes minimum=stable
Potential equilibrium
Energy U= Dipole placed in opposite direction of

electric field=P.E becomes maximums=stable
equilibrium
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—_—
ot
=+ .-"l l,I"i-”-m
- = =+ i p :
Torque T = p X E
C it ~ .
apacitance C= % Cis independent of charge and voltage.
Viis O OM During charging a capacitor half of the
E UEs—CVWe —=
ICLZEEICE 2 2 2 supplied energy is dissipated as heat.
. KAes
) =210 . ? Ta
Parallel plate capacitor o 4 a

K- dielectric constant of the material

Force experienced by i (a8 s J_. L
== E + Thig
any plate 2Ag,
Fry S,
Capacitance of an
Isolated Spherical C=4neoR R-radius of the conductor
Conductor
1._ o ﬂp Qp =0
. Ae,
[ = - *||— E +*
; 1) + o -
| d-1+ | + = +
T
Capacitor with dielectric \ K : = Eg +
* -
Bound charge= al |- E +
i d

1
fﬁ,,:{ﬂ[l—E]

Capacitor with metal . Agy t=thickness of metalsheet
shset = d= separation between the plates
(d —1) A=area of crossection of the plates
I TN it
Ge-q C1 Cz ca ! t:’ g ‘J :f::
Series Combination 1 1 1 ! : !
WOIWG WY C,'C;' G, II‘

Parallel Combination

gq=g) +gdy+gg+..

Charges on connecting
two charged capacitors

CiVi+CaVs
Gq L Gz

C
S AT i + [,
Q=CV= =24 Q)

C,
QE = l:?v= -(:.:l. ":2- {Q +Q2]

Heat loss=
AH = l"'ll - l"'I-r
CiCy

"2 C+C,

—

M=
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CURRENT ELECTRICITY

Electric current&Current
Density

Al

i=lm _Q i(i
At —sdl] _"lf ”llf
. AL
J= AS eos0

Electric currentin a

[ =neAV, f.-ﬂ-% = neu,

conductor 1
| =
A j '
. . - e eV Uy cT : 3
Drift Velocity& mobility Uy = i )y=—= i
m mi n .
e P e
Resistance is the property of a
V —IR conductor it depends on length, area
, of cross-section, temperature of the
Ohm'’s Law ml
R = e conductor.

Ane’t Resistivity is the property of the
material of a conductor. It depends
on temperature of the material.

Dependence of £
Resistance on R=R (1 +a0) 3|
Temperature L
TEmpssiare
f Ry Ay

Resistances in Series

.!'E :'{fl + ff-_:: + .!E-g

A l—".".-".".-".".-—"-".".-".".-".—".'."\'."'\.'.i—iE

Resistances in Parallel

i
AANAN
E Az
A Ay g
fiy
WA,

Kirchhoff's laws

Kirchhoff’s Current Law (Junction law)

ZI=0

Based on Conservation of charge.

Kirchhoff’s Voltage Law (Loop law)
EZIR+XE EMF=0D

Based on Conservation of energy.

g [0
Wheatstone network L _XE <@>
eatstone networ < = . ,1“-'\]/*’:5 I,
d |
. Open circuit =
=
EMF, Terminal voltage & E=Vr 1=0 |

internal resistance
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Discharging circuit
E=Vr+Ir

Charging circuit
E=V1-Ir

. . Em:E1+E2i .....iEn f ()
Cells in Series _ i
rﬂq = r1+r2+r3 ;
At
R
r L Pz k p By
Py oL Fi = b
i i ..1'44 = . . )
1 2 - -
Cells in Parallel 1 1 1 ; ::| =
—=—t—,,
feqg M T2 -
i mine
mhR + nr e e o
d |II :-"II by
) ) Current in this circuit will be maximum 2 f— J-
Mixed Grouping of Cells when external resistance is equal to the e (B | I
equivalent internal resistance, - ‘
R nr A
]
.  H=Pt
. H=heat dissipated
P=rRr I=current
Electric power and heat oW Vvolt
F R:VO .atge
H o= %1t = 171 -resistance
T=time
MAGNETIC EFFECT OF CURRENT
T [,
e == L = I
. aB = Lo, 17
Biot-savart's Law AT r3 F
/
Magnetic field due to a moving B - Hg q(v xr) i
point charge = 41 r3
Magnetic field due to a straight g | . ) i’ G' .. P
wire B a5 7 (sin B, +sin B,) i ﬂ'z.-( -
Magnetic field due to infinite B = H ¥ N,
straight wire T 2r r r
&
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Magnetic field at the centre of a

circular loop 8 mgNI
2r
Ampere's Law §éﬂ ¢ = Ligl

Magnetic Field Due to a Current
Carrying Long Circular
Cylindrical Wire

Outside the wire

B-Ho I

2r r

Inside the wire
Be Hg Ir

r.n Rﬁ

Solenoid

- - — X ® M k4
F=g(vxB)
X K
Magnetic force acting on a i o TIRV
moving point charge gB ® *®
2mm ¥
= {}B b ® ®
JE‘} = g Kv = =
=qu X D. =TT
q T
muv i \
Lorentz force and motion of F= _B i F ” e
chargedparticle q \ F g
2nr  2mm i FI /
T= = ot X
1] qb3 ®8 y .
]
Magnetic force acting on a = (_. — ) ¥
current carrying wire F=I/=<B F@\
B
Wy LT
;r j. | .
Force between two long F = Hg Iyls I ' =
parallel. 2 r =

Magnetic field due to a coil

At an axial pont:
;B
Hy 12

2{{1 2+d'£:] arg




Torque acting on a loop

Al
|
<l
%
!

(=

-
/ o
L |
i : ¥ Lo ¥ i
" W I b
i " .

Solenoid B= W, 12 | II
'.II - |
!
L 35 HEnOno000EEI00 ]
Axial point Equatorial line o — . )
|: EF
“D 2?"'1 “ﬂ M af e == Y
ety | BE oo —
4n r 4n r
Magnetic field due to a bar B,
magnet At a general point Bt
B
MM — A e
T . I b [ ~ b
dr o ¥H+300s°H -
3 =l |

Moving Coil Galvanometer

NBIA = k6

Current
L Voltage
sensetivity sensetevity
2= Lol f’"‘ 6 NBA
: v er

Conversion of galvanometer

Into a ammeter(connecting a small
resistance in parallel with the
galvanometer)

[, xG=(I-1,)x8S L
Into a voltmeter(connectinga high | et f
resistance in series with the ) R !
galvanometer) A lgG,' T 8

V =I_(G+ R)

Bar magnet

Cut into two equal pieces such that
the length of each piece becomes

half
20 M
M=m—=—
2 2

cut into two equal pieces such that
the width of each piece becomes
half
%)

M= | ’; ]t.’«’.‘] i

=

Pole strength is directly proportional
to area of cross sectionof the bar
magnet.
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If bar magnet is bent in the form of o e
semi-circle £ N
M= .rn{i".rll.j.;f’..r = ;lrh],.f !...I.'_ o rr.'.lll]
M':HJHEI_]:— 2r
Ln T
evr
M=
Magnetic moment associated ™M - —[ = ] L -
with the revolving electron " eh
M=n
dnm
Oscillations of a Freely T 2n —— I -
Suspended Magnet R g J.t1|ll MB mB
B
ks =
i
Perm
eabili Magnetisation
% | FrR
ty (D= =%
| %4 A
(e > —
Magnetic materials sucep Relation between
tibilit | syceptibility and permeabilty
y
(x.rn “‘ :"I'ﬂ' {1 + xm}
= Fararmagnatic =

ELECTROMAGNETIC INDUCTION

Magnetic flux ¢ =B -A=BAcos@
Gauss’s Law in Magnetism ]I' B.dS=0 B=magnetic field. S=area vect.or
8 e Monopoles do not exis.
i Induced charge is independent of time
Faraday’s law == —
dt
AN
L g S A
Induced emf due to rotation e=< Bwl~ x ” .
Motional Emf e = BU! l “ "
1 I; [
- " I
Self-inductance of a long q} 1= Li . . S .
lenoid n,N%A . Self-inductance is called electrical inertia.
solenoi I =19 F =pon Al
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Mutual Inductance

=M |'|”|”_|.l"lll

= L FL,TLTr L

LC Oscillations

z 1
LC
w=angular fregency of the LC
oscillation

LR

ALTERNATING CURRENT

-
e j it
i = i
21 A
Mean and rms value I =— N i& j ot
n rm: Jz -
: Lz
trmae = £
Power in AC V,.m Imr_v cosg Cos ¢ is called Power factor

- 1—%._...
Purely resistive Circuit = l"" =in ot | Z=R v,' I
s 1 =
<P>=V_ 1 COS¢ 4=0
L
| = = ,:fm cos ot
o ST = nf2 NS
Purely capacitivecircuit | A
Z=1/wc
=P= = Vrms lmCOS ¢!={} ¢ = /2
————————— v
I=1I,sin(wt-/2) ®le
Purely inductive Circuit Z=wlL
<P>=V _ 1 _Ccos¢=0 7 L

Series LCR

=1, sin{mt + §)

—" @
V=4V +(V - Vg)
Zi R X~ X
e
-

coa B =

33/ 




At resonance,
Jkrj'. —_— XF .
Resonance frequency

1
f =
L

2

AC Generator

¢ = NBAw sin ol

Transformer

Transformation ratio
f\'l_l..‘l = F:I‘ ! I'F.l

Np Ep I

Secondary coll

ELECTROMAGNETIC WAVES

Displacement Current

(!{IIF:

Ly =Ep- di

When displacement current is taken
then conduction current becomes
zero and vice versa.

Maxwell’s Equations

§E-ds=2

Epn
§,B-¢f5=m
=

dép
dt

§B-dl=p, e + Ip)

Jt%,- E:dl=-—

Gauss'’s law in electrostatics
Gauss’s law in magnetism
Faraday’s law

Modified Amperes law

Electromagnetic Waves

v" EM wave propagating along positive X
axis:

E=E, sin wf g =2 |
v i g

Y P
B=8, sin w| 1-2 |
1 iC)

. 1
‘/ \Illr, Ly By
¥ Z
.
v =,

v" Poynting vector:
(Direction of EM wave propagation)
B = 1 (E = B)

H o
v' Intensity:

Bleciio beid
s .
. T T s,
i A
ST
e
.'-\.L di it .'I
", ‘_ . )
'--""r Propagaton of
[rc— m‘-ﬂ:ﬁs o

v' Poynting vector represents
the direction of EM
wavepropagation

v" Energy is equally shared
between electric and
magnetic fields.

v" Average energy
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I=<uz=>c
> =

v Linear momentum

Lr

e

v" Magnitude of the total momentum
delivered:(complete absorption)

rr

I

=
v" Magnitude of the total momentum
delivered:(complete absorption)

, 1
density=<ug>=<us>=€oko’
v' Total energy
) 1
den5|ty=<u>=5.°_oEo2

v' U=<u>.volume

207
p —
p
GEOMETRICAL OPTICS
i, 1.2 1 %
v u R f =
I, L ! F .
= r . - E: il P
h, 0 ] E
Spherical Mirror m=_Y b
L «\é
Image and object speed =
dw v du K i
- Foee— |'_"|
ot u- dt A

b i

Refracted index= %

:—2= refractive index of medium 2 w.r.t.
1

Snell's Law Sin i n; medium 1
Sin r n,
A ray travelling along the path of the
reflected ray is reflected along the path of H‘"“- _ rarer msdium
Principle of Reversibility | the incident ray. A refracted ray reversed ‘*\\ e ————————
of Light Rays to travel back along its path will get :
refracted along the path of the incident e
i —
=,
d AII.I; it " 1
Apparent Depth d'=— e ["”“
u iCilass,
saler, ete.)
e al
C o= osin - n, i Farer rossciurm

Critical Angle and Total
Internal Reflection

n;

(a) Lightis incident on the interface from
denser medium.

(b) Angle of incidence should be greater
than the critical angle

t DansEar rmacdium

Refraction Through
Prism

r,+r,=A
o=i+e-A

4 When 6 = 8min, the angle of
minimum deviation, theni=eandri=r;




a &
sinl'q'. *El'hm I
v =T sinjd
v For a thin prism ( A<10°)
6 =(n_-1)A
. . Na Ny DT,
Refraction at Spherical v u =]
Surfaces & lens makers : ‘1 |
formula 7 = (n, =1) IR_. _ R;_J
Focal Length of a Lens 1 _1 1
Combination F £ 1
4
Cutting of a Lens
)
Compound Ugfe
i Vo f '
microscope My = _,;.| 1+E-=
Ul:' i rE )
Optical instrument M - fﬂ
0
fe
Telescope
/ T
M- = "} 1+ - &
°" %L D et
WAVE OPTICS
l = 11 + 12 + Em cos ':-"\{b} "|_|I||i:ullH.'\lir"nrh:l.d.. - .
_ [ i Fho I Vo
I, = l?, I = -'1-]| [elw L0 [ —:-':-- ] ¥ |l|r|'||.l\'I.'l'h'l.llll:rﬁ'r|'|'|.'h'|' |
Resultant Incoherent sources ! ey i oy coe e | |
intensity [ = 11 + I;-_ |
Constructive Destructive interference -2~ B2k W2 L2 L ok dlleeced
Interference .= |:'-.‘|'.I., : J!x }" -4 - -0 -% £ & & AR Thee dfirmo)
Jrll\-'u= {'\I‘rl'l ' 'l-'lrIE :"‘l
Path difference Fringe width 3
Ap = Szpt -3,F p= —1:
=d sin 8
Highest order maxima Highest order minima
d [E + lJ
YDSE n = | N.= |33 G, -
max }L }
| o L.
Total number of Total number of minima ol o
maxima =2n L
=2n _ +1 ma
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Position of bright Position of dark fringe=
i = (Zn -130.D
frlngi}‘ S i
.lrln ght — F D

Nearest point to central maxima where the bright
fringes coincide:

y=n;p, =n}p,

For maxima For minima
Q= i asinB=nA
asm9—(2n+1)5
Linear width of central | Angular width of central - 4 .-
maxima maxima . - e
2DA 22 - ila
S e - pmmm 2T
Diffraction a a R
e al o
Linear width of any angular width of any = _iia
- r
other secondary other secondary maxima
maxima A —- 1 e
DA a -
a
No. of interference fringes inside diffraction
maxima
_2d
- a
d= distance between two slits
a=width of each slit
, a Ray optics is valid up to this distance
T Ze =t ignoring broadening oflight beam due
Distance U

to diffraction.

MODERN PHYSICS

Photoelectric effect

v" Work function | b
Thastoweloct e -—I; 2= 3 I
VWV = hvy Fiot ! h
Uy . _ —_ o
v" Photoelectric current is directly . “'/ C— — I,
. . . L
proportional to intensity of Stopping potential / I.r;/
incident radiation. (v — constant) ‘\\ il
v’ Photoelectrons  ejected  from _1,‘: Collector plate
metal have kinetic energies +— Retarding potential potential
ranging from 0 to KEmax — ]
e bect i curfent — ———
v Stopping potential is independent ) I
of intensity of light used (v-| w,=w.=w, /’, /
constant) Y A —
. . . . } & ;
v' Einstein equation for photoelectric va /. K
effect ey
- - -
P = W + K Vs -Vpg -V @ Collector plate ——
v" De Broglie wavelength: —— Retarding patential ptential
s = [
s .
h -
= —_— -
2mKE
-
| =
Efectrie Potenbial (v)
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Rutherford expt.

"

F T T T T TE]
SCATTERID AHALE (f)ms

Impact Panmeter (k)

h:ﬁl"‘%‘*ﬂ";

Distance of cosest Apprach

re Rl

Radius, Energy and
speed of electron in
hydrogen like

e Tao | 3=0529A

Yo | y=219x10Fms

Electron

Mucleus

atoms. =
E =E,. ‘:7 Ei=-136eV
n1= level of a lower energy orbit
n,= level of a higher energy orbit
o aries limiEl g s e
1 1 1 o H H ' H n=T
LorlF-g] = T T o e
Wavelength ¥ s Lt P
corresponding to e Total number of possible = "\'}L__ : LBrackei me
A e —_ _- - i i |_ Taschan ]
spectral lines transitions= s ! e e
nn —1) I L
=2 LAl 1 Visihle Tight
: Lyman
RER i met
U
Moseley’s Law Jv =a(z—b) Not valid for H atom
.:-'-'__ll T
De-Broglie /f’_f———ﬁ .
explanation of LS o
Bohr’s second 21y, = nh T AL
postulate of R " Mucleus
quantisation WA
Sl o
Minimum
length for x- Aty = e 12400, Vo-accelerating potential
wavelength for x bmin = @VD = Votuoin o-accelerating potentia
rays
v B =R,AY
v" Nuclear density is R-radius of nucleus
Nuclear Physics independent of mass no. Ro-radius of hydrogen nucleus
v" Mass Energy Relation A-mass no.

+ =
I~ = mc
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Bi={im, +(A-2)m, -my )

_.E .
u e [HFe (LTY P
§ e s . S SO L VIR PO =T
ﬁHUhMEO T —
§ g
3 ol
Binding Energy = .
!
Curve 5
w1
sef
T ®H
& 0 T 150 200 250
Mirsiss numibier (A) —s
Nuclear Fission geU™ + n! —— Ba' 4+ . Kr" + 3,n' + energy
Nuclear Fusion H*+ H*+ H®* —» _He'+ H'+ jn' + 21.6 MeV
SEMICONDUCTORS
Intrinsic:
T— e Ne=Nh=Ni
E E, & K T
H E, E, T
5 m_ B _ :
Ad rinsle senieorelacion Al T = 0 K theermallv 'T' —
brhaves lke insulator gemerated electrom: ole
il T=s O K 1ers
Extrinsic: p type
LX) an
Intrinsic and /”—.-—
extrinsic |  fpmoeeeee®eee--q
LA
R B e ey
—n.2
Extrinsic: n type Ne-Nh=Mi
LA LR LD ] ke
‘\'vm
gy
YA
T-type BeFTRCORGUCICr
e
™ i ol Elaciran
i i
p-n diode '




H Foreasd T
Ll
+ S —
Forward bias
] —_— Vemsge
el | = Vorags
Iﬂ (Tor Sleon Sadas Vs = QLN

é -:: HEVERSE BIAS (V)

-5 -2

1

9

*
wra o

Reverse bias

-
(LU FUE" e B o ELE L]

Half-wave:
fout=fin E.g
[E[* 8] -5 H‘
TRAMEFORMER T

: g
AL @ H
i -3
Primary T -
Rectifier Full-wave: 3
four=2fin b
DHODE 1
o Tiene
TRANSFORMER [+
g,
AL a
= 8%
mary Sacondary .
I T

HODE 2
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Chemistry
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Chemistry 9 & 10 Foundation

Cations are positively-charged ions (atoms or groups of atoms that have more protons than electrons due to
having lost one or more electrons). Anions are negatively-charged ions (meaning they have more electrons
than protons due to having gained one or more electrons).

Cations

Narme
hydrogen ion
Lithiuo 106
spdium 1on
potassium ion
rulbidium ion
RMIMANIUT 160
ilwer won
beryllium ion
Magnesium ion
calcium ion
strontitd o
barium lon
ZInG o
cadmium on
aluminum ion

Anions

Name
fluoride ion
chloride ion
bromide ion
1odide ion
hydride ion
hydroxide ion
cyanide ion
sulfide ion
bisulfide 10n
(hydrogen sulfide ion
oxide ion

Name

Oxalate lon
Peroxide lon
Thiocyanate lon
Thiosulfate Ton

Charge

ﬁ

Br

gaggs”

)

2

Formula and

e o

01.1 :
CNS
$,04?

LPACName
copper([) ion
copper( 11} 1on
ironi11} jon
iron(]1T) ion
tanf11) bk

tnf TV} 1on
mercury(1) ion
mercury( 1) 1om
leadi L} 10m
leadi{TV) iom
nickeli 11} ion
nickel( 111} ion
chromium{11) ion
chromium{111) ion
cobalt(I1) ion
cobalti L} ion

Name

Common Name
CUprous ion
CUpric 10
ferrous ion
ferric jon
SLanmous ion
Stannic ion
METCUToUS 130
ETCUric 100
plumbous ion
plumbic ion
nickelous 10m
nickelic ion
chromous ion
chromic ion
cobaltows 1on
cobaltic 1on

chlorate ion
bromate ion

iodate ion

nitrate ion

sulfate hon

bisulfate ion
(hydrogen sulfate ion)
carbonate 1on
bicarbonate ion
(hydrogen carbonate)
phosphate ion
arsenate ion

silicate ion

chromate jon
dichromate ion
acetate ion

permanganate ion
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¥ COMMON NAME AND FORMULA OF
: IMPORTANT CHEMICAL COMPOUNDS
¥, Common Name Chemical Compound Chemical Formula |
. Ba Sodium Bicarbonate NaHCO,
¥  Blue Vitriol Copper Sulphate CuS0,.5H;0 :
i " Caustic Potash Potassium Hydroxide KOH
e, | Caustic Soda _ Sodium Hydroxide NaOH = |
L. Chalk (Marble) Calcium Carbonate CaCoy
g Chloroform - . Trichloro Methane CHCI, .
" Diry Ice -Solid Carbondioxide CO; :
Epsom Magnesium Sulphate MgSoy,
y | Green Vitriol Ferrous Sulphate FeSo.
Y Gypsum Calcium Sulphate CaSoy,
1 Heavy Water Dieuterium Oxide D0
" Laughing Gas Mitrous Oxide N0
A 7 =| Magnesium Oxide MgO
Marsh Gas ~ | Methane .
3 Mohr's Salt Ammonjum Ferrous Sulphate | Q)
o FPlaster of Paris Calecium Sulphate CaS0,2HO
i Fotash Alum Potassium Aluminium Sulphate | KAIL SO,
/.’ Quick Lime Calcium Oxide : 3 4_‘_'__!(;) )
Sand - Silicon Oxide ; Si0,
Y, | Slaked Calcium Hydroxide Ca(OH), ]
¥  Sugar Sucyoss CigHyyOny g
T.N.T. Trinitrotoluene C H N, O it
i Vermelium Mercuric Sulphide Hgs
| Vinegar Acetic Acid : CH,COOH sl
w, Washing Soda Sodium Carbonate E Ma,C0,
L A ‘White Vitrial Zinc Sulphate ZnSo, TH,0
\ \/-'- [Atomic Numbar | Name of the Elament “mi‘é?ﬁimm “'l.l_lhl'lﬂ Eh&nﬂe_é;hﬂ;umr-m
\ [subshall wise] [shall wise)
7 1 Hydrogen (H) 1st 1 1
L Y . 2 Helium [He] 1s? o 2z
% 3 Lithiurm |Li] 157 24! 1 24
P 4 Beryllium [Be) 15 25° 2 2.2
L 5 Boran (B] 1s® 25% 3pl 3 2.3
6 Carbon (C) 15% 25 2p? A 2.4
£ 9 7 Hitrogen (M) 15 2s% 2pt 3 1.5
o 2 Omygen (0] 1% ps¥ 2pt ? 16
w o Fluorine {F] ist st 2pF 1 2
¥ | 10 Neon (Na) 1s% is7 2p° o 2.8
s 11 Sodiumn {Na) 157 257 2p® 347 1 81
N 12 Magneshuom {Mg] 17 257 2pF A F 2,8 2
/ 13 Aluminium [Al] 1s% 257 2p% 557 3p! 3 ]
14 Sidlcon (51 1% 25 2pF 32 3p? 4 2,84
15 Phespharus [P} 147 247 2p® 357 3p° 5.3 4,85
i 16 Sulphbur (5] 17 227 2pF 322 3p 2 2,86
My 17 Chiorine (Cl] 17 257 2p* 327 3pF 1 ]
J: | 18 Argan (Ar) 17 257 2p% 357 3pF [ 28,8
b i9 Potassivm (K} 1s¥ 25 2p® 3s® 3ptast 1 2,8, 81
i 20 Calcium [Ca) 157 257 2p® 357 3p” 4s* z 2,B.8,2
7 21 Seandium (5 157 247 Zp® 347 3p8 3t 447 3 2,8,9,2
22 Titarsium (T} 155257 3p53s 3p8 37 g7 & 2,8,10,2
Yy 23 Varadium (V] 15 75? Jpf %s® 3p° 3% 4s? 5 d 2 E 11,2
e Sl 24 Cheasmium (Cr) 157 257 2p® 357 3p* 3d° ast z 2.8 131
/.1 N 25 KManganese (Mn] 157 25® 2p® 357 3pf 3 a? 74,3 2.8 13,2
| '1_\ 6 iron [Fa) 1s% ¥ 2p® s 3pF 55 457 2.3 8. 14,2
Yl 27 Cobalt (Co) 152 757 2pf 35¥ 3pF 307 457 3,3 2,8,152
P 18 Hickel (NI} 15t 7% 2p% 35t Apt 08 gsd Fl 2,8 16,2
. o] Copper (Cu} 15% 25° 2p® 357 3p® 3d™° 45! %1 2,818, 1
zk 30 Zinc [Zn) 1s% 257 2pF 37 3p5 3d 4t 2 28,182
& ‘-,'z
L
R 43
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REDOX REACTION

reductant #Electron mddzmt -um:tlsed

f \transferx 5
{A} |,|n£|—'\~/).aa
_— o
U \jredu:!ﬁ
i

LEQ {loss electrons oxidation) A GER (gain electrons reduction) &
Reductant Oxidant
Acts as a reducing agentto B | Acts as an oxidising agent to A
U is oxidised O is reduced
U loses electrons U gains electrons

Acids & Bases

ConceptT map

react with
(rautradee)
e other H‘ yieid an excess of
13- I!brn'l hydroxide ions
yheld an excess of readt with in aQuesus soiUTlon

hydrogen ns

in agueocus solution - -
m
o =3 have itartats

o B Hﬁli'i'l turn litmius blus

v
turn litrmus red
i

strong/waeak | [ monoprotic/polyprotic |

Ipﬂrtrlﬂv dissolve skin |

pH and its scale
Mo neutral
more acidic imore alkaling
hiaker concentration of hydrogen ions I higler concewtration of hydrexide iows

il O | U VAN
S | |

Sulfuric acid  Vinegar  Ram  Human Sodium
Nitric acid  (Ethamoic Blood 7.2
Hydrochloric acid  acid) Toothpaste

a4 (X X



Reactivity of Metals -

Potmsenum (K)
Sodmimn Ma)

Calenem (Ta)

Mlietalsmmore

r=arirve tham
by drogen

Magnesnam (Vg
Ahrrmier (Al
I (2]
Renn (Fe)
Tin(5n)

e Lead{Ph)

Hydmgen{H}

— . Copper{Cu)
hlrtalylesa
meartrve tham
bydrogen

MdErrury fHgh
Silver {Ag)
Cold iAul

Flow Chart ; Extraction of Metals

{Concentration of Cres)

' ! i
‘Metals of Metals of Metals of
Moil redctive high reactivity medium low reactivity
metaln 1‘ reactivity
Eleetrolysis of l Sulphide
Carbomn phice
1='ur1:-lr metal ore - 5""]"‘: m;l‘ ating
Decreamng chernical rea ciivay l ) lﬂ 1
Calcination Roasting Betal
l l !
1‘ Refining
Ohdde of metal
Lsast teactve metals -I-

Reduction to metal

Purification of metal

Metals

Non - Metals

(1) Have a tendency to donate
electrons.

(i) Have a tendency to receive
electrons.

(1) Displace hydrogen gas from
dilute acids.
Zn +2HCl - ZnCly + hs

(i1) Don't displace hydrogen gas
from dilute acids.

(1i1) React with oxygen to

(iii) React with oxygen to

produce basic oxides. produce acidic oxides.
4Na+0;-+2Na:0 C+0z ~ CO

' (iv) React with hydrogen to (iv) React with hydrogen to
produce Hydrides. produce covalent compounds.
Ca+Hs -~ CaHa C+2Hs - CH,

| Chemtes] Prngeriies) Mntsly Narvgnstals

1, Reaction with oxygen | Metals react with oxygen to foem

hagt: oxices which orm hases when
dizenlve in water.

Nonmedals reach with osygen to
farm aeidie wide: which form azde
waen digsnlee i watar.

2, Reaction with watcr

Metals ceael with wader b Lo ther
nicls or hdroxides

Noan-meetals o nol eenel with wolcr,

3. Reaction with avids

eoapeetive sall: along with svolulion
of hyrleogen pe Some mesals Tke
Cu, Ag Ao, el ddaoool Therale
[rpdl o s,

Metds erawl with acids Lo produne |

Non-mefals do ool rescl with amls |
eavepl sulphure which seael si Lol
eaneeadented aeid.

4. Renelion wilh Tnses

Mot of the metals do oot veact with
Lupsies. Howewer, some metals like A,
Fo, fn o with strong bases Jike
WaCT to fwern eorplox sl aod e
drrgem pas.

Ceneeally, non-metals de ot Teace
with frsses, Sometimes, sume comples
reclinns L pluee Delween non-
ezl arnd Lo

5 (X



XY O
u atams 3 ‘-Z.__'
A Il;' '_ . -
1 \: n ",
.F_ S i
g TRANSFER OF £
& g ELECTRON /
modculs '”::‘“ ""'F;:“ o .
pavalent bond lorie bond ¥
o h .'.. . A
4 IMPORTANT FACTS TO MEMORIZE N
4 Wost abundani Chygen Highest wnization He Strongest basic CslH r
element in human body patential hvdroxide
P Mozt gbundant gas H, Liwest iomzation Cs Strongest basic muide (), (caesium g
in sun potential peroxide) v
_\ Most abundant gascs H,, He Lowest electron Noble gases Most stoble metal Cs,C0,
X in universe affinity {zero) carbonale -
. Elemint having Li Highest eleciron Cl Element with highest  Ra '
maximum tendency affinity rallioactiviry C X
% for catenation Non-metals having iodine, Strongest reducing  Azide (N]) X
Most shundant metal Al metallic husture praphite agemt £
of earth Element sublime on | Strongest oxidising  OF, y
P Rarest element of Aszating | A} heating agem g
earth Coolant in nuelear D0 Smallest anson H~ (hydndes) "
Most sbundant Cixygen (0) reactors Smallest pomic e H A
element of carth Most poisonous Fu Largest atomic size Cs
] Element containing H element Elemen with Ag i46) 4
i 0o ncutron Liquid nos-metal Br, mkmum nismber .
§ Amphoteric metals — Zn, AL Sn, Pb Total number of 2 of ssotopes ¥
Noble metals A, Pt rdioactive elements Element with Hi3) (¥
¥ tersile strength Volatile d-block Zn. Cd Mg of isatopes N
¢ Metals showing highest Ru, Os elements Element with So
oxidation number Liquid metals s Hg, Ga, Cs, masimum mumber A,
NS Non-metal having Diamond Fr, Eka of allotropes w
LA highest mp. hp Element kept in water P Liquid element of Franciam {Fr} A
= Lightest clement H Elements kept in Na, K, L, Cs radioactive nature P
KA Heaviest naturally = kerosene oil Poorest conductor — Ph (metal), X,
. occurring element Metal with highest W of current S (non-metal) E 9
" .
X X
" \ - :_ _ 4?6 f/
.".‘.' '.r"z:. “wt” ' 4 Y4 % o r"'z _f:"'. L4 f .L"'.-.



Best clectnaity

Best conductor among
non metals

Most reactive solid
element

Most reactive liquid
element

Most reactive gaseous
lement

Amphoteric non metal
Elements showing
diagoral relationship
Highes
electronegativity

Groops containing ~ Group 18 (Noble

(irapite

Li

LiMg, Bedl,
BSi
]

higher no. of gaseous - gases)

glements
Most electrovalent

compound

Bad conductor of
electricity

Lightest radio isotope

Csk
Mica

Triam ()

mp.
Metlwiowest g
mp.

Non metal with highest Diamond
refractive index

Lowest refractive —— Air
index

Lowest by. H,
Heaviest solid metal O
Lightest solid metal ~ Li
Lightest sclid ron metal B
Hardest maturally ~ Diamond
OCCUrTing hon meta

Hardest arificil BC (norbide)
substance good
conductor of heat

Compound with max- H}. N}, Ul, CI}
imum covalent nature  (diafomic gases)
Van't Hoff

First noble prize in
chemistry

Softest form of
carbon

Latest allotrope of
carbon

Lamp black

fullerene or

bucky ball

Metalloids clements B, 51, Ge, As,

5h, Te

Dry e (o0,

Most recently Ds (atomic

elements name number = |10}

by [UPAC

"All purpose’ grease  Lithium stearate

(ld name of astatine ~ A\lhamine

Mostsbundant s o N,

atmosphere '

Rarest gas in Rn

amosphere

ligesgsin H

snogher

Strongest acid HSOF +9%0
"o ShF, caled
magic acid

Most reactive form ~ White

of P

Least reactive form  Red

of P

Purest form of silica  Quartz

Most ductile metal (ol

47 X X



Fe

Magnetite  —»
Limondte e
lron Pyrite  —
Haematite  —w
Copper Pyrite —»
Spathic lron —
Cu

Cupnite o ~ ——

Ruby copper

Copper Glance—
Malachite = —»
Azunte —
Fh

Galena —
Anglesite  —=
Stolzite —
Cerrusite —
Wulfemite — —
Ag

Argentite or  ——

Silver Glance

Pyaguite  —»
Proustite —
Hom Silver —
Mg

Magnesite = —»
Camnalite —_—
Kiessente —

IMPORTANT CHEMICAL COMPOUNDS

Cu0

CuS
Cu(OH), .CuCO,
CalOH) . 2CuC0

PbS
PhSO,
PHWO,
mi

PhMnO,

AgS

3AgS. Shs,
IAgS. AsD,
Agll

MgCO,
MeCL, KCL 6H.O
MgSO, H0

Schonite —» MgS0,
K,S0,6H,0

Dolomite ~ — MgC0, CaCO,

Epsomite  — MgCO THO

Kaimite — MgS0, KCLIHO

Olivine  —» MgSi0,

Spinel — MgALO,

Al

Coundum ~ — ALO,

Diaspore ~ —» ALO,H,0

Bausite ~ —» ALO, 2H0

Cryolite. ~ — NaAlF,

Felspar — KAISi,0,

Tale — Mg, H,(Si0),

Ashestos  —w CaMg, (810,

Mica — KAISi, 0 (OH),

Kaolinite ~ — AljOH), §1,0,

Turquoise ~ ——» AIPO_AKOH),
HO

Alum Swne. — K50, ALISO,),

or Alunite AAKOH),

Be

Beryl — 3BeD ALD,_6SI0,
or Be ALSI 0,

Phenacite ~ — 2Be0 S0, or
Be 10,

Cryso beryl  ——= BeOALD,

Ca

Anhydrite  —» CaS0,

Dolomit=  — a0, MgCO,

Gypsum

Sr
Strontionite
Celestite
s af Ba

Whitheriie
res of Ra

Ores of Zn

Franklinite
Willemite

WATER SOLUBILITY OF SOME COMMON INORGANIC COMPOUNDS

L All N, K’
pourads are soluble.

and NH® com-

5. All bodides. ex . Hel, and
Hgl;msn[ubifmm e

3 All mirates, mirites and acetates wre 6 All sulphates except BaSO, CaS0,

sofuble.

3 All chlorides, except AgCL PHCL and
Hig,CL, are soluble. b1, is soluble In hot

waler.

4. Al bromides, B, PhBr,, H
maw,nmq P

Sr80,, PhSO,, He,SO, and AgSO, are

luﬂuhie

7. All carbonates except those of groap |
elements and {NH, )00, are insoluble,

8. All hydroxides except those of group |
elements, BafOH]), CalOH), and SeOH),
are msoluble.

}

!

}

PLEL L

9, All sulphides except

"’E‘.! ImI}I E“F:
€S0, 2H,0

K0.UQ,
(VO,), 3HO

Uranium aoxide

Zn0Fe 0,
InSi0,

HygS (Cinabar)
Sn0)

]

TiO,
FeOTiO,
3BOALD, 6SiD),

3Ca, (PO, Caf,

thios of group | & 2

elements and (NH,),5 are imsoluble.

10, All phosphates except those of group |

elements and (WH, ), PO, are insoluble.

1. Al sulphites, except those of group |
elements and (NH, ), 50, are insolublbe.




SOME IMPORTANT ALLOYS

1. Alctad 1t s an abloy of aluminium and
used in making sz planes,

1. Afmico It isanalloy of steel | 77%), nickel
{2%}, aluminium (20%) and cobalt {1%],
It is used in making permanent magnets.

3. Alwwininm bromse It 15 an alloy of 0%
copper and 10% aluminim 1t is used in
making coins, trays and picture frames.

4. Alwminium bronze contains %% Co and
10% Al phosphor bronze consisting of
4% Cu, 5% 5o and 1% P is hard, elas-
e and used fior pump rods, valves, axle
bearing and certam other equipments.
These are malieable, cormosion resistan
and suitable for cold workng.

& Bobhir metal It s an alloy of Sn (8-
90%), b (7-4%) and Cu (3-T%). Hand
babbit compasition is {a) Sn = 9%, b
= 4 M and Sho= 4 5% and (h) Sn =
B3%, Cu = B.5% and Sb = B.3% It s
used as beanng metal

6. Bell meval It is an alloy of Cu and So
having 8% Cu and 20% Sn. 11 is hard
beittle and sonorous. 11 18 used for fab-
ricating machine parts and bells, pongs
[

T. Braix 1t is an alloy of 7% copper and
30% mine. [t is used in making wensils
efc.

R, Britania metal or pewter 1t is oo olloy
of Sa (B5-95%), Sb (6-10%), and Cu
{1-3%). It is used for making cups, mugs
and other wiensils.

9, Bromzes These are mostly the alkys
of copper and tin and contin 75-90%

mainly used for making coins, satues 2n
special rype of ensils.

10, Constamion 1t is an alboy of nickel (404

and copper (60%). 1t is used in electrical
wirrk such as for making resistance boxes
and thermo couples étc

11, Dbt metal 1t is sn alloy of Cu (55%),

Zinc (41%) ond Fed%) It is wied in
making ships, hesring, and properlbers.

12 Dueralwmin It i an alioy of ANY5.5%).

Copperi4%), Mg(0.5%) and Mni0.5%).
It is used i making aeroplanes parts.

13, Dutch metl 1t is an alloy of copper and

Zing and is used in gold covermgs.

4. Electron 1t isan alloy of Mg and Zn with

small amounts of Al, Cu and Mn, It s a
hand medal alloy used for making propel-
lers of engines and air-crafts

15

16,

17

19.

.

n

n

.

15,

Ferre alloys = Ferro molwbdemen i3 an
allov of Mo. Usually the percentage of
Mo is less than 1%, bui about |.3-2%
Mo has been wsed for high speed steel
and 5% Mo in resisting steels. 6-10%
Mo s used for preparing special steels.
Ferm ailicon has 3 composition of 5 =
90-95%, C=0.15% S=001%and [ =
(05%.

Ferry manganese or Spregeletsen has
average composition Mn = TE-R2%G, O
= 75% P 035% 5 = 0.5% and Si
= ] 25%,

Ferre nike! contans N = 25-5%. Il s
hard, tough and nutless. It is used in the
mamufscture of cables. Propeller shaft
armor plates s

Ferro titanium bas & compasition of Ti
= 384 5%, C = (h.1-6%, 5 = 15-23%and
Al = % (1%, Ferra nungsien % hard and
strong and contsins W o= 1420 It s
used in the momufscture of high spesd
1ools.

Ferre vanadive las composition ¥
= 304, C = 33%, P = 0.25%, §
= 04%, 5 = 13% and Al = 1.5%, It
has. high tensils strength and is used foe
muking springs, axles, shafis ete. Both
tungsten and vanadium make steel hard,
Such hand stee! is used for making high
specd toali
Ciermun silver or Nickel silver These are
Cu=in=Nialloys containing shouwt 0%
Cu, 25% Zn and 23% Ni. Nickel &5 ased
for fancy articles, forks, spoons, cigaretic

Gun  metal It & an  alloy of
Cu, Sn and Zn I conmins E8%
Cu. 10%5n and I%Zn 0t & used
in mking guns. Ceears and beanings.
drvarr It has 64% Fe, 33% Ni and some
traces of Mu, C. 1 i usad in making pen-
dulum rods.

Magnalium 1t is an alloy of %0% Al and
10% Mg, It is used in making balance
beams.

Monel metal 1t is an alloy of 30% Cu,
%M and 3%eMn or Fe_ It is used for the
construction of household sinks and con-
tainers and alkabi-resisting equipments.
Nighrome 1t 15 an alloy of Nifb0%).
Cr{15%) and Fe{23%) and is wed in
muking electrcal resistance.

b,

i

kF

1,

Nickel coinage alloy for coirage pur-
pose. an allay of Nif25%) and Cu (75%)
is used. Another coinage alloy is slver
coinage which contains 5% nickel

. Pewter 1t is an alloy of 24% Pb and T6%

S and used for making utemsils,

Rose metal It is an alloy of Bi50%),
P{25%) and Sn{25%). 1 is used in mak-
ing steren metal in penting and safery
Plugs in boilers,

Silicon Bronze contains upto 4% 5i and
upte 1% Fe, Mn. 20 and AL but does oot
contain Sn. They have strength like mild
seel, encellent comision resistance and
also have welding prop.

Solder 1115 an alloy of 67% Sn and 3%
P, It is used in soldering. Soft solder
contains 3-80% Ph and 97-20% Sa. This
fin=lead alloy is wsed for jening metal
parts because of its bow melting point.
Stainless sivel It containg Cr (showt
118%) and Ni (about %), 1t is used in
making utensils and surgical mstraments.
Sterite 1t is an alloy of chromium, tung-
sters and nickel and is used for the manu-
facture of high speed tools and cutlery.
This abloy is also used for making surgi-
cal imstruments.

Tiscor It containg  maomum  0.1%
carboa, Mn = 0.1 - 0.4% (maximum), Cr
= 7=0.1% Co=03-05% 5 =05
=1 0% P=01=02%andS=00%
These two alboys {Tescorn and Twcor)
are high strenpth enpincering  stoeks
i India

M. Tiscwn [t contains maximum 0.3% car-

3

bon, Mp = 0.5.1.3%, Cr = 1.00%, Ca
= (.25-06%, 51 = 0.3% (maximum),
P o (05% (mmaiemum) and S = 0.03%
{ s ).

Tipe metal It is an alloy of Ph(E2%),
55(15%) and Sn(3%) and is wsed for
making type for printing.

3. Wood metal It is alloy of PH(215%), Sn

(12.5%), Cd (12.5%) and Bi (3%} 1t is
used as automatic sprinkles. 1t mels in
bt water as its mehiing point I 68°C.




IMPORTANT COMPOUNDS

L Apate is silicon diowide, Si0,

L Ammomal is 4 mixture of ammoniom
nitrate and Al powder (NI M0, + AL It
5 used as an explosive.

3 Alum s (NH_50, ALISO), MHO. 1t
B e ag of clothes.
Potash alum is IS0 ALS0O,), 24HO

4. Adgua fortis w nitne aced, HNO,,

5 Antichlor 18 sodiam 1 4
Na, 5.0, 5H, O It is also called Hypo.

6. Agua-Hegia is & minture of cone, HMNGO,
and conc, HCT in the mtioof 1:3. s
also known as kingly water

7. Baking soda s sodims  bicarbonate,
W,

K. Barytes is bariom sulphate, BaS0,

9. Brine is sodiam chlonde {Mal'l) solution.

1. Bloe wvinel i copper  sulphabe.
CuS0, SHO.

13, Bone ash is mamly calciam phosphate,
Ca (PO,

11, Bomx s the name of sodium setrabo-
e bydate NaBO_10HO. Borax
Mo, B, 0 s also called tincal.

13, B{OH), i an scid

. Browm Ring is of Fe50 _NO

15, Burier of un is Snl, SHO.

16 BOUD is biokegical oxygen demand.

17, Cuprite is Cu 0,

18, Calomel ks Hy,CL,

19. Coustie potash 15 KOH.

M. Caustic soda & sodium hydronide,
NalJH

0. Chale saltpeter is sodium nitrate, NaNCk

22. Cimnabar i% HgS

1. Carbonde acid s hydrogen - cashenade,

HLO,

M. Carbalic acid is phenal, C,H,0H

15, Carborumdum is silicon carbade, SiC

26. Copper glance 15 Ca,5,

. C B 3 mibore of 1% OO0, aad
O, It is used ax antidote for for OO
poisoning.

M. Corrosive sublimate is mercurse chlonde,
HgCl,

2. Corundum is aleminium oocide. ALCH.

M. Chronny] chioride i CrOLCl

31 Cream of tanar is KHC H O

3. Cyanogen s C N,

33, Dead burnt plaster is anbydrous CaSO0,

M. Dry ice s solid carbon dioxade (CO, ).

35, Epsom salt is the name of magnesium
sulphste, MgS0, TH O,

3. Energy is n mixture of ALO, snd Fe (0,

119. Sserling sibver 15 a solution of Cu and
Ag.

120, Stranger pas is xenon | Xe),

120, Sugar of lead & lead acetate,
(CHLO000, M.

111, Super phosphate of lime contnins Ca
{H PO, H O and 20080, 2H .0

123, Syvine is KCL

124, Tamar emehc 15 poEassiam OEHMOEY
tarirate, KiShOC HLO

128, TNT is trinatrdoluene., an explosive.

37, Eka aluminium is gallium.

38, Fluorspar is CaF,

39, Freon is CCLF,

40, Formalin is 0% formaldebyde (HCHO)
dl. Fremys saht 15 powmssiom  hydrogen

fluoride KHF,_

42. Foul air is nitrogen, N_. 1t is also called
azate.

43, Fischer's galt i potsssium cohall nitric
K [CoN,))

44, Fowler's solution i NaAsO, solution.

4%, Fusion mixmre is Na CO, + K COp

46, Fluorine is called super halogen

47. Fulminating gold ts Au{NH,) = NH

48, Grain aboohol is ethyl aleohol, C H OH

49, Crrape sugar 15 dextrose, C_H O

50, Cilauber's sali is thve name of sodiam sul
phae, Na 50, IIJ'III'D

5. Gypsum 5 calcium  sulphate,
CaS0y, IH O

5L Geeen  withol i%  ferrons  sulphate,
FeS0 TH.O

53, Gammexane s benzene  hexachlonde
(BHC), CHCL,

54, Gun powder 15 & mixture of sulphur,
charcoal amd nitre

85, Giraham's salt ds (NaPO)

56. Hydrolith is calcium hydride, CaH_.

57, Halite is commaoa rock sall (NaCl)

Horn silver s AgCl

[ S g

AR

59, Hair salt is ALISO), IBH O

60, Hypo is Na,5,0 SH 0,

61, King of chemicals is H 50

62, Kabi ;| Germans used the word "Kali' for
Foansh

61, Limessenes 5 calcum m‘hl‘l.ﬂe-.ci.'ﬂ..

6l Linar caustic b5 silver nirate, AgNG,

65, Laughing gas is nitrois oxide, M0, It ks
alen knoam as langhing gntes

b6, Lithda waler 18 sgoeous solution of Lith-
iusn bicarbonate { LAHCO, )

67, Lapis Laculi s blue coloured mimeral
usel % serni-precious sone. 11 s sodium
aluaning silicate.

o8, Milk of magnesis is magnesiam lydro-
i, Mp(OHL

69, Marshalls acid & persulphunic acid
H5.0,

T0. Milk of lme i3 calcium ydeoxides,
CalOH]}. Inis abso called slaked lime.

71, Magnesite i MpOO,.

T1. Microscopic salt i Naf NH_JHPO,_4H (0

T3, Mica s KH ALSO, ),

T4 Magnesia is Mgl

=

Th. Marsh gas or fire damp is C,

126. Tear gas 15 chioropicrin, CCLNO,

127, TEL is tetra ethyl lead, PHCH, ),

128, Thomas slag is cakcium phosphate,
Cay (PO

129, Tineture of iodine i L and K1 solstion
in alcohal,

1M, Thermile B & maatre of iron oxlde
{Fe, 0, ) and Al powder.

131, Tinstone or Cassiterie 18 Sn0),.

132, Vinegar is dilate acetic acid, CH,COOH

133, Washing soda s Na0O),

T7. Mok’ E=1] Is
SO 6H O

T8, Muriatic acid is hydrochlone acid HCL

79, Messler’s reagent is K Hgl, It contains
HgCl,, K1 and NaDH. The ions present
in it is Mgl*

B, Nitre Cake i NaHS0,

81, Nitrolin is CaCN, + C (graphite)

Bl Morweigian salipeire is basic calcium
nitrate, Ca(NO), ),

83, Omane 1s sodum peroxide, Ma,0,

B4 (Kl of vitriol 15 sulphurnic scid, I{ISD‘

BE, Mewm & fuming sulphunc  scid
concentrated H, 50, + 50,

B6. Ol of mirbane 1s C_H NGO,

87, (vl of wimler green s methyl salicylate.

BB, Plasier of paris Is calchm sulphate
hemihydrate, Cas0,. Y, H,O.

89, Philosopher's wool is zime cckide, Znd),

9. Phosgene s carbonyl chiloride, COC),

91. Picric acid s 2.4 f-inmitrophenol

91. Paris green i dowbde sall of copper

F:HJ‘. i NH«':

acetate and ¢ arserate.
93, Pearl white (s BaOC] and is used a3 a
st el

94, Prussian bhae is Fe, [Fe{CML],.
95, Pearl ash is K00,

96, Pethydrol is 30% H.0,

97. Prussic acid HON.

98. CQruick lime = calcium oxide, Cal)

B et e silicmn dimada ©EY

W Luarts s selioon desoaede, SiLh

1ML Quick silver is mercury, Hy

10]. Realgar is As,S,

WL Recufied apirit s 95% ethyl alcohal,
C,HOH.

103, Reagar s As .S,

104, Red lead is lead tetronide, PhO,. B is
alzo called Minium.

105, Red lquor is alamimem  scetube
(CH,C00) AL

106, Rochelle sali is sediem  polassiom
tartrute, NaklC HO,

1. Rock salt is NaClL

108, Ruby or sapphire or Emery 15 ALD,

1. Salt cake is sodium sulphate, Na 50,

110 Sand is silicon dioxide, Si0,.

111, Scheet's green is CublA=D,

I Selidlite powder i NaHOO

113, Smelimg =ali is (NH,),CO

114, Soda lime 1= a mixture of NaOH and
Cal).

115 Sodn ash i sodiem carbonate, Mo OO,

116, Sodamiile i NaNH,

117, Spinitof wine s CH OH

118 Sparit of saht is HCL

134. Water glnss is sodium silicate, Na,Si0,,

135, White lead is PR(DH),ZPC0,

136, ‘l-'n:h:rmdn'kuql.ﬁdislir‘:ﬁ‘ +HS

137, White vitiol 15 Zine  sulphate,
EnS0, THO

138, W spirit e CH OH

139, Venligris is the name of basic copper
acetate, (CHCO0), Co CufiH),

140, Yellow  ammonium  sulphide s
(NH,},5x.

L. Fincite w Zoll,




ACTION OF HEAT ON SOME SALTS

ZnC0, (whilte) == 20 + C0O,
{yellow-hat white-cald)
CuC'0), (green) — CuD + CO, (black)
Ca(0, —» C10 + CO,
2Ap,00, —» 4Ag + 200, + O,
INZHCO, — Na,CO, + €O, + HO
NHHCO, — NH, + €O, + HO
2FeS0, —= Fe 0, + 80, + SO,

20350, 24,0 393K 20350,
Y HO'+ 3H,0 (Plaster of
[paris)
(80, SH0 (blue) — CuSO, + SH,0
{white)

IMPORTANT PROCESSES

L. Bosch process —s- H,

L Down, Castnier — Na

3. Nebson, Castner = Kellner, Salvey Droney,
Lowing —s MNaOl

4. Ammonia soda process (Solvay process)
—=Na C0, NaHCO,

5 Leblane, Pretch progess —= K, U0,

6. MacArthar forest or Cyanidotion  ——m
Ag, Au

7. Pesk. Patinson —- Ag

B Cupellation — Ap (Purification)

9. Mund's process — Ni {Purification)

Mineral (Formula) Colour Uses and Their Properties
Augite [{Ca, Na) (Mg, Fe, Al} Black Monoclinic  Square or B-sided cross section
(AL §0),0, ]
Barnite |Cu,FeS) Bronzz, amishes o dark  Tetragonal Source of copper; called “Peakeock ore™ due to
bilue, purple its purple shine when it tamishes
Chalcopyrite {CuFeS,) Brassy to golden yellow  Tetragonal Main ore of copper
Chromite {F‘CI:DJ Black or brown Cubic Ore of chromium,_ stainless steel, metallurgcal
bricks
Copper (Cu) Copper red Cubic Pipes, coins, putters, wire, cooking utensils, jew-
ellery, decomtive plaques; malleable and ductile
Corundum (ALO ) Colourless, blue, brown, Hexponal — Gemsiones; ruby is red, sapphire is blue, indus-
green, white, pink, red trial abrasive
Feldspar (orthoclase) (KAISLO,) Colourless, white to gray, Monoclinic  Insoluble in acids, used in the manufacture of
green and yellow porcelam

CuS0, —= Cu0 + S0,
(NH)LCr O (orange) —=N, + Cr.0, +
40,0 (green)
M0, — K Mn0, + Ma0, + 0,
IKCI), — 2K + 30,
4K Cr0, — 4K,010, + 20,0, + 30,
(COO0)Fe — FeO + CO + €0, (black}
2Ag0—s dAg + 0,
ZHE (red) —= 2Hg + O, [sitver deposit)
2Ph, 0, red) — 6PBO + O, (yeliow)
2P0, (brown) — 2P0 + O, (black)
INaNO, — INaNO, + 0,

1. Baeyer's or Serpeck”s progess —s Al
11. Hoope's process ——= Al {Pustfication)
12, Hall Herouli Process —= Al

13, Gobd schmidt
crocess — Thermite Welding

14. Carter's pioceis = White lead

15, Haeber's process —» NH,

16, Deacon’s process — Cl,

17. Contact. Lead Chamber process
—= 130,

18, Berkland-Eyde, Ostwald

— HNO, NO

MINERALS WITH METALLIC LUSTURE

NHNO, —» N, + 2H0
2AgNO, — 2Ag + INO, + O,
2Cu(NO, ), (brown) —— 200l + 4NO,
1
TiniN, ), (white) —» 22000+ ANO,+ O,
bow-hot

yel

white-cold (own)
ICafNO ), —= 2020 + 4NO, + 0,
ZPHEND,), (wiiir) = 2PB00 + NG, + 0,

(yellow) {brow)
IMgIND, ), —= IMgO + NG, + O,
NHNO, — N O+ IHO

19, Kaldo, LD —»st2el

0. Corey = House ——@ Allkane
21 Oxno— R-0H

12, Dow’s process —= Mg

23, Prdgecn —= My

. Cynnamide — NH,

N IMl—=Ti

6, frash —m %"

17. Siemene, Basemer Thomass — Steel
I8, Lane's process —=H,

9, Gossage process — Ma(OH




Mineral [Formula)
R
Fluerite (CaF )

Galena (Phs)

Garnet (Mg, Fe, Ca), (ALSL0,)
Gold (Au)

Graphite (C}

Huematite (Fe,0,)

Hornblende [Cu Na (Mg, AL Fe),
(AL Si), 8L, O, (OH),}

Limanite {hvdrowus kron oxldes)
Magnetite (Fe,0,)

Olivine [(Mg, Fe), Si0,|

Pyrite (FeS,)
Pyrrhatite (Fes)

Quartz (Si0,)

Sliver (Ag)

Topaz [{ALSIO,) (F, OH),|
Bauxite (hydrous sluminium com-

pound)
Biatite [K(Mg.Fe), AISL0,, (OH)|

Calelte ((200,)

Dolomite |CaMg(CO,),|
Gypsum |CaS0,2H,0)
Halite (NalCl)

Kaliste [A,54,0,(0H)
Muscovite [ KALSLO_(OH) |

Sphalerite (ZnS)
Sulphur (5)

Tale [Mg,{OH), 5i,0,]

Colowr
Girmy, green white

Colourless, whire, hiue,
green, redl, yellow, purple
Giray

Deep yellowred  green,
black

Pale to golden
Bilack 1o grey

Bluck or reddish brown

Green to back

Vellow, brown, black
Black

Olive green

Light, brassy, yellow
Bronze

Colpariess, vanoas colo-
rus

Silvery white, turnishes to
black

White, pink yellow, pale
blue, cobourless

Ciray, red, white, brown

Black 1o dask brown

Colourless, white pale,
blue

Colourless, white, pink,
green, gray, hlack
Colourless, groy, white,
broum

Colourless, red, white,
blue

White, red, reddish brown,
black

While, light gray, yeflow,
s, green
Brows

Yellow

White, greenigh

SEREAEREL EHHH;'

Crystal
Systam

Triclinic

Moenoclinic

Monocine

Used in cermics; striations present on some faces

Used in the manufacture of opiical equipment, ghows
under wltrnviclet light

Source of lead, shields for X-rays, fishing equipment
sinkers, usad in pipes

Used in jewellery, also used as an shrasive

Madicines, jewellery, money, gold leaf, fillings for
teeth, does not tmish

Pencil lead, rods to control some small nuclear reac-
tions, lubricants for locks, hattery poles

Source of iron: roasted in a blast furnace, converted
to “pig" tron, made int seel

Will transmit light on thin edges; 6-sided eross sec-
tio

Souice of inon, weathers easily colouring matier of solls
Source of iron, naturally magneiic, called lodestone
Gemstones, refractory sand

Source of iron, *fools’s pold™ alters 1o limonite
Often found with pestlandite, an ore of nickel; may
e magnetic

Used in ghass manufacture, electronic equapment,
madios, computers, watches, gemstones

Coins, jewellery, silverplate, flllings for teeth, wires,
mallesble and ductile

Valunhle gemstone

Source of alumimm; used in paints, diminkum foll,
and airplane parts
Orecurs in larpe flexible plaes

Fizzes when HCL is added; used in cement and other
building materals

Concrete and cement, wsed as an omamentsl build-
ing stang

Lised extensively in ihe preparation of plasier of paris,
alabaster, nd dry wall for building construction
Sabt; very soluble in water; a preservative

Clays; used in ceramics and in ching dishes; common
Ocours in large fexible plates, wsed as an insulator in
electrical equipment, lubricant

Main ore of zinc; used in paints. dyes, and medicine
Used I medicine, fngicides for plats, vulcanis
toin of rubber, production of sulpburic acid

Easily cut with fingemuil; used for talcum powder;
soapvstonse 15 used in paper and for table tops
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MOLE CONCEPT

d SOME USEFUL i 2 ATOMIC MASS OR Y ( RELATIVE ATOMIC MASS OR )
CONVERSION FACTORS REFATIVE MOLECUL AR MASS
i MOLECULAR MASS Mass of one atom or molecule wrt
IA'I“"‘E-. IIHII.-H}"!:II .-"‘fia-&'ﬁ gfma'mm Ilrl:uﬂf'ztﬂtfm
lpm=10""m molecnle m amu, C12
1 Bre = 10" = 1 oo’ C - 12 2mm H.O -» 18
1 atm = 760 qum or torx H:U ~ 18 amm It 15 umtless
= 101323 Pa or Noo™ it i
- 1O Mrs e 1007 GRAMS ATOMIC MASS OR
L ACTUAL MASS GRAM MOLECULAR MASS
1 calone=4.184J mass of one atom of Mass of one mole of atom o1
1 electron volt{eV)=1 6022=10-* 1 molecule n grams molecule
T 3 5
(1J=10"exgs) Callxlgxilrxg C+12g
HO18 %1 6% 10 g HO»18g
flmi}lh;ﬁg'—’”ﬂ P ke, o) L Itis also called molar mass )
F DEFINITION OF MOLE b

One mooke 85 2 collection of that many entities a5 there are maber of atoms exacty m 12 gmof C-12 sotope.
The mumber of atoms presemt m exactly 12 gnof C-12 wotope & called Avogadro's mapber [N =6.002 = 107]

Ie
=1 2mm = (1/12)F of mass of  atom of C* = - =166 % 103 g
For elements

= 1 gatom =1 mole of atoms =N atoms

R * g atomic mass (GAM) = mass of N, atoms m g )
For molecule = Mole of atoms = ﬁﬁ For ionie
1 g molecule = 1 mole of molecule =N molecule * 1 g formmla unit = 1 mole of formmia umit = N,

gmolecular mass (GAD) =mass of N, molecule in g

ila T,
* g formula mass (GFM) = mass of N formula unit in

Mass{g) E
Mole of molerule = ————— ) Mass{g)
GiviM or molar mass . o i S
Mole of fornmla unit e T u—
I mole of substance Average or mean molar mass
Contains 6.022 » 107 particies The average molar mass of the different substance
Miny + Mung +_..

Wieighs as much as molecular mass /
stomic massfionic mass in grams

i it is & gas; one mole oocupies a
volume ol 224 L at 1 aim & 273 Kex
227L at5TP

i

DENSITIES

_ Mass
Dignsity = ——

Dersity of amy substance
Relatrve Density = ‘g of refarence substance

present m the contamer Moy ST

Heze MI. M, are molar mass of substances andn |
0, are mole of substances present m the '
Comtamer

VAPOUR DENSITY
Ratio of density of vapour to the density of
Molar imass
Vapour density 2
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[ Molarity(M) ]

v | *xvo

[ mass ia (g) ) p N ‘:&Lmbu ::rf . 'M :r‘n‘uhlm of gas (m L}}
) e mans ek @) o Tmar 2 5TF
4N, x N,
[ Number uflzmictes]
( STOICHIOMETRY BASED CONCEPT )

aA +bB —eC+dD
a.b.c.d, represents the ratios of moles, volumes [for gaseous] molecules m whach the reactants react
or products formed.

ab.c.d does not represent the ratio of masses.

The stowchiometric amount of components may be related as

Molesof Areacted . Molezsof Breacted - Molesof Creacted : Molesof Dreacted
a b N C d

[Concept of limiting reagent]

If data of more than one reactant is given then first convert all the data into moles then divide the moles of
reactants with their respective stoichiometric coefficient. The reactant having minimum ratio will be L.R.
then find the moles of product formed or excess reagent left by comparing it with L.R. through
stoichiometric concept.

PFROFENTAGE YIELD: DECREE OF DISSOCIATION, (@) :
6 et = mw” " <300, It represents the mole of nﬂr:m# dissocuted per mole of the sibsance aken
i A — o parficles: "'ﬁ!'-_il_!'rl
FERCENTAGE FURITY where, 1 = number of product particles per pamnicle of reactans
The percemtage of a specified compound or = Molar mass of ‘A
Actual ol pound M = Melar mass of fnal nwoewre
% purity = Td‘.-lm“ n:qm i 100 Dissoctaton decreases the average molar mass of wtem vhile assoation mor=ases 8

If mupurity 15 unknovwn, 8 15 alwavs consadered as mert (unreactrve) materzal
[ PERCENTAGE DETERMINATION OF ELEMENTS IN COMPOUNDS |

Mass % of an clement m 3 compound
stomicity of an element xatomic mass of an element
molecular mass of compound

Empirical formula : Formula depicting comstiment atoms m ther sunplest rano.

Molecular formula : Formmla depactmg actual mumber of atomrs m one molecule of the conpound
The molecular formula s gensrally an mtegral nultaple of the empnical formula

Le mokecular formula = empirical formula = n

100
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For determination of atomic mass :
Dulong’s & Petit's law :

Atomic weight of metal » specific heat capacity (cal/gm®-C) = 6.4,

It should be remembered that thus liw 15 an empincal observahon and this gives an approxmmate value
of atonme weight. Thus law grves better resub for heavier sobd elements. at lugh temperature conditions

Concratration Mathemarical Concrpt
Type Formuls
Percentage by ouss '.{E]._._.._...""ﬂd"*ﬂ* % 100 AEsofsckie(n
m 100 gm of soblanon
Vohae percenge | 24(1)- YA Volime of s (1 c)
present @ 100 ooy
of solton
ot by T —
S in 100 cu of sobaion.
e e e Parts by s ofsohte
ilbon parts
" mmoﬁ:e :ryhnuq
fartion Mok of A
Mole X ek d Arhch BT, | Fioofmmberof
moles of one commponent
Mole of B
ko As B A Cr 1 the total mumber of
males,
Hlolanty Ly Males ofsote
n one Eer of solution
Molaliry o if*T‘L;i"‘f'f—w Moles of sahte in ope
kg of sohent

MIXING OF SOLUTTONS:
It 15 based on law of conservation of
moles,

Two solutions having same solute:

Tolalmoles M.V, « El'u'l
i e e )

Dilution Effect

MW
Fﬂlﬂlﬂﬂ!’-”:"ﬁ

OXIDISING AND REDUCING AGENT
Oxidizing agent or Oxidant:

Oxidizing agents are those compounds which can oxidize others and reduced itself during the
chemical reaction. Those reagents whose O.N. decrease or which gain electrons in a Redox
reaction are termed as oxidants.
KMnOy4, K2Cr,07, HNO3, conc. H,SOy4 etc, are powerful oxidizing agents.

Reducing agent or Reductants:
Reducing agents are those compounds which can reduce others and oxidize itself during the
chemical reaction. Those reagents whose O.N. increase or which loses electrons in a Redox
reaction is termed as reductants. e.g. KI, Na,S,03 are powerful reducing agents.
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B 4

0O HOWTOIDENTIFY WHETHER A PARTICULAR SUBSTANCE IS AN OXIDISING OR

REDUCING AGENT
| Firxl the O State of the central atom |
|
i 0.5 =M OS5 or alemoe eleciron) | [ i 05 =Minemum 0.5, i | OS5 = mermedale bfw max & mindrmom
] 1
s Onadizing it's a rediucing It can act both as reducng
agers agen! agert & oxidizing agent

It can disproportionste
as wel

REDOX REACTION

A reaction m which oxidation and reduction smmultaneously take place

In all redox reactions the toral mcrease m oxadation mumber noust equal the total decrease m oxadanon
mmber

2 7 +3 o2
e.g 10FeSO, = 2KMn0O, + 8H,S0, —+ 5Fe2(50,); + 2MnSO, + K,S0,+ 8H,0
Equivalent weight (E) :

. oy Molecular weight i Mol wit.
a4 WH(E) = encyTactorivl) — n—fackr

mass of a sample
eq.wi.of that species

no of Equivalents =

. Equmvalent mass 15 a pure number when expressed m gram, 1t 15 called gram equivalent
mass
. The equivalent mass of substance may have different values under different conditions

n-FACTOR IN VARIOUS CASES

In Non Redox Change

n-factor for element : Valency of the element

For acids: Acids will be treated as species which furnish H+ ions when dissolved in a
solvent.

The n-factor of an acid is the no. of acidic H+ ions that a molecule of the acid would give
when dissolved in a solvent (Basicity).

For example, for HCI (n = 1), HNO3 (n = 1), H2S04 (n = 2), H3PO4 (n = 3) and H3PO3 (n =
2)

For bases: Bases will be treated as species which furnish OH- ions when dissolved in a
solvent. The n-factor of a base is the no. of OH- ions that a molecule of the base would
give when dissolved in a solvent (Acidity).

For example, NaOH (n = 1), Ba(OH)2 (n = 2), Al(OH)3 (n = 3), etc.

For salts: A salt reacting such that no atom of the salt undergoes any change in oxidation
state.

For example, 2AgNO3 + MgCl; ----->Mg(NO3)2 + 2AgCl

In this reaction, it can be seen that the oxidation state of Ag, N, O, Mg and Cl remains the
same even in the product. The n-factor for such a salt is the total charge on cation or
anion.

A 4
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SOME OXIDIZING AGENTS/REDUCING AGENTS WITH EQ. WT.

Species Changed to

MaO;(OA)  Mn’

et

MnO;(0.A)  MrO,

i raidr g irsdas

MnO;(0OA)  MOF

i b sadaam

(1,0, 04A) ™

i sl

MaO(0A) M

In-achdc muadim

CLIOA) 4=
hlhu:'!mgm EI

CuSO JU.:"&.F Co

i kit |Evadan

5,0, (RA) 5,0,

Reaction

MnO; + 8H + Se—sMn™ +4H0

MnO, +3¢ +2H,0—Mn0O, +40H° 3

MnO] + & —s MO~

CrO;7 +4H +6— 2Cr +7THO 6

MnO, +4H + 26 —> Ma +2HO 2

CL+2e— 2CT
Cu +e— Cu’

28,0, — 5,0, +2¢

ATOMIC STRUCTURE
IMPORTANT DEFINITIONS

Elecirons  Eq. wt.

exchanged
or change in
0O.N.
_ M
5 E“'E'
M
=3
M
1 E_T
E:E
o
M
=3
M
9 =
2 E 5
M
1 E—-l—
. M
2 E-T—M

Proton (m,)
/anode rays

mass =1.67 * 10" kg

Neutron (m )

mass=167x 107 kg

Electron(m )
[ cathode rays

mass=09.1x 107" kg

mass=167» 10 g

mass=167x 10-**g

mass=01x10%g

mass = 1.00750 amu

mass = 1 00850 anm

mass = 0.000549 anm

e/m value 13 dependent
on the nature of gas

taken i discharge tube.

g/m of electron 15 found to

be mdependent of nature of
gas & electrode used.
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REPRESENTATION OF AN ELEMENT

Maw number = | 4 Symbol

L ol he
}{h elemeni

Atomle number — (1

Terms associated with elements :
+  Atomx Number (Z) : =No. of protons
Electron =7 - C (charge on atom)
Mass number (A)=Total number ofneutron and
proton present
A =Number of proton + Number of Neutrons

Isotopes : Same atomic number but different
mass number

Ex. . CH.CH N

B T T |
Isobars ; Same mass mumber but different
atomuc number
Ex ]H’_ He?
Isodiaphers : Same difference of mmber of
Neutrons & protons
Ex. B, CU
Isotones ; Having same mumber of neutron
Ex. H', He
Isosters: They are the molecules which have
the same oumber of atoms & electrons
Ex.CO,NO

Isoelectronic Species having same no. of
electrons

Ex. T, Ar

BOHR'S ATOMIC MODEL

Theory based on quantum theory of radiation and
the classical laws of physics
. Kzee) _m?

l2 T

- m-'rlE— Of ' = il

I
* Electron remams m stationary orbit where #t
does not radiate s energy.

2
* Radius : rtﬂ.E-Eq:rn?ﬁ

ATOMIC MODELS

Thomson - An atom considered to be postively
charged sphere where e 5 embedded mside it

Drawback : Cannot explam stability of an atom.
Rutherford Model of an atoms :

Electron 5 revolving around the muckeus mciroular
path
R, =R(A)".R,=133% 10" cem
[A =mass number, R =Radms of muclens]
SIZE OF NUCLEUS
The volume of the oucleus 15 very small and
only a mmute fraction of the total volume ofthe
atom Nuclens has 3 diameter of the order of 107
“1o 107 cmand the atom has a dameter of the
order of 107 cm.
Ths, dameter (sze) of the atomas 1,00,000 tmes
the diameter of the mclens.
ELECTROMAGNETIC SPECTRUM
EW MW IR - Visible UV -X-rays +CR
(Radiowaves —Microwaves —Infrared rays
-+Visible rays ~Ultraviolet rays -X-rays
-+Cosmic rays)
Wavelength decreases .
Frequency increases -
€ l v

o Py, fhm—- T
v A e

Tal -E-;E-Iw_ h=6626x 10 Js
L' .

#

*E(ev) 5 ——

*Total amount of energy transmutted

E-ﬁw-%

HYDROGEN SPECTRUM

* Rydberg's Equation -
SR oI § )
I-P-Rﬁ[n% P%]uz
Ry = 109700 em™ = Rydberg constant

* For first bne of a seriesn, =n. +1
* Limiting spectral hne (series limit) means

g W N

N =x
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¢ Telm:il:.' ty=2 188 10P -z-ms"
n
* Energy(KE + PE)
=Total energy=-13.6 nZ‘T eViatom

o TEaall pp K o

.-J{E;.:E
i r i
PE=-)KE KE=-TE PE=)TE

m!

" ¥
Revolutions per sec =g

* Tme for one revolution -

v
* Energy difference between 0, and n, energy
level
S LN
s ]
where [E = tonization energy of single electron
Specs.
* lonization energy =E, -E. =0-E.¢
E., = Energy of electron m ground state

DE-BROGLIE HYPOTHESIS

*  Allmatenal particles posses wave character
as well as particle character

L] :F,,I-—l--l-—

mw P
The circumference ofthe n® orbit is equal
fo 0 tmes of wavelength of electron1e.,
=1
Number of waves = n = principal
uanfum gumber
! BB

. Wa‘lr’Eng[h of electron (1)2 .1 Vs

. F.!m '

* H Imemeansn, =n-1; also knownas me of bongest
J., shortest v, least E
* Similarly H, lme means . =1, +2
* When electrons de-excite from higher energy
level (n) to ground state m atomic sample, then
mumber of spectral lines observed m the
_Nin=1)
2
* When electrons de-excite from higher energy
level (n,) to lower energy level (n) m atomuc
sample, then mmber of spectral line observed
m the spectrum

_np=ny){ng=ny +1)
2
» No. ofspectral lmes m a particular series

= [L-[L

HEISENBERG UNCERTAINTY

Accordmg to this principle, * # 15 mpossible to
measure simultaneously the position and
momentum of a microscopic particle with
absolute accuracy”

[fone of them is measured with greater accuracy,
the other becomes less accurate.

h h
AXAp 2= or (Ax)(Ay) 2 =
dn

dxm
where  Ax =Uncertamty m position
Ap = Uncertamty m momentum
Av = Uncertamty tn velocity
m = mass of microscopic particle
errsﬁﬁfg replaced the concept of orbat by that
of orbutal
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QUANTUM NUMBER

*  Principal Quantum number (By Bohr)

h
= 1l—= 118
= Indicates = Size and energy of the orba, ,j'rl!r+ i?g Jr[.-.. ]

distance of & from nucleus b = Planck's constant
- Viluesp=12345 B = For H & H lil= species all the subshells of a
h shell have same energy.
= Angular M . ia Jy=1 Js=3p=3d
- - 2x ) +  Magnetic Qlunrﬂm number [n:lﬁI
= Total mumbet of &5 m an orbit = 2o’ =+ Given by Linde
= Total number of orbitals m an orbit = o’ =» Indicates orientation of orbitals 1. direction
= Total number of subshell i an orbt = 11 of electron density,

= Vaeofm=— . 0. . +f

= Maumum no of ¢'s m an orbital = 2
(with oppesite spin)
m for p sub shell = p, Py B

*  Azimuthal/Secondary/Subsidiary/Angular
momenium quanim number (£)
= Given by = Sommerfeld
— Indicates = Sub shells/sub orbit/sub level

= Values=01.......(0=1) "a.._:ﬂ' 2
= Indicates shape of orbital/5ub shell m for d sub shell =
Value | Values of 4 Initial from dy dw A e By
ofn | [Shape] word B T S R

eg. f =0 (s) [Spherscal] Sharp
Ifn=4| t=1 [p] [Dumb bell] Pruncipal E//
2 1] IDeuble domb Diffned: L Spin Quantum Number (m_or 3)

bell]
Grven by Uhlenback & Goudsmut
= b
3 [f] [Complex] Fundamental Vakus oo 43
= Totalno. of 5 ina suborbit=2(21+ 1) Total value of spm in an atom = =iz *number
= Totalno. of orbitals in a suborbit = (21 + 1) of unpaired electrons

= Orbital angular momentum

Spm Angular momentum = fs{s+ Hﬁh_-!

Aufban principle : The electrons are filled up in mereasing order of the energy m subshells.
RULES 1522522p4 35 3pAdsT3d 04pt S5 oS piGs 4 S Gps Ts S FH6 A0
OIS (n+£)rule : The subshell with lowest (n+ £) vahe s filled up first, but when two or more
FILLING subshells have same (n + /) value then the subshell with lowest value of n is filled up first
OF Pauli exclusion principle : Paul stated that no two electrons m an atom can have same
ORBITALS values of all four quantm pumbers,
Humd's rule of maximuom multiplicity : Electrons are dismibuted amone the erbitals of subshell m
such awayas to gve mammmm mmber of inpared decirons with parallel spm:

THERMODYNAMICS

Deals with interaction of one body with another in terms of energy.
System: Part of universe under investigation.

Surrounding: Rest part of universe except system.

Boundary: Divide system & surrounding.

1 ) . p THEEMODYNAMIC PROPERTIES
Stnte function | Path function
- Extenzive Intemsive
! Properties which depends only | Depends on Properties whach e dependess Propermies which are
on initial & final state of system | path or process. REIBS e ot e SehGORAY, B e
poesem momviem (nize & masy) presest o e

& not on process or path.
eg U Hete &g work heat
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SYSTEM PROCESSES
- r £ Daahsrmal Tachory habaric Adiaharic Crelie
. Energy and marter| Only epergy | MNetther energy R Vet bt A i &
can exchange |can exchange | mor matter exchings firual ware
’ . ) . dg=0 of swrem
AP ame
a 3 . g 2 iy
Extensive Properties Intensive Properties
Volume Molar volzme
Nuomber of moles Density
Mass Refractive index
Free Energy (G) Surface tension
Entropy (S) Viscosity
Enthalpy (H) Free energy per mole
Internal epergy (E & U) specific heat
Heat capacity Pressure
Temperature
Boillmg pomt, freezmg pomt tc
. J
r HEAT (q)
ible process Irreversible process
° Slow process = Fast process Energy exchange due to temperature difference :
g=CaT q=aC_sT, g=maal
At any tume system *  TNo equilibruum between C = teat capactiy
and surrounding ars system and surrounding Cm - milar beat capaeay
m equbbrum 4 = specfic heal capacicy
. P =F =dP " P =P =aP m = Amoumt of substance
WORK (W) SIGN CONVENTION
Reversihle Irreversible
4 w| bhe |q
W =~ I P eV “Iﬂ T P.n-':"'lz_\'l;:l
L]

INTERNAL ENERGY (E & U)
Every system having some quantity of matter i assocmted with a definte amount of energ)
ternal ensEy

Dl et U s U
Tis a stafe fimetion & » an extensive property
AU=T,, -U_,

For @ given closed system

sysiem

T=£T,V)

i 5
T el —| av
dU [111_]":!I'+(ﬂ,]rd‘.

FIRST LAW OF THERMODYNAMICS (FLOT)
Law of conservation of energy
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Ay Chemical reactions are generally carned out at constant pressure (atmospheric pressure) so it has 'u._(!,- 4
% been found useful to define a new state function Enthalpy (H) as. Ay
X H=U=PV Yo

E,," Y AH = AU + A(PV) i'\__;-«_
f{ at constant pressure AH = AU + P AV \/
Y combining with first law. AH = q KA

Wl : NS
Y RELATIONSHIP BETWEEN AH & AU X
i _-/ '?.-"
¢ ?'x‘,./- The difference between AH & AU becomes significant only when gases are mvolved (insignificant N
Wa m solids and liquids) AH = AU + A(PV) X
F i r Y #
Y X
If substance is not undergomng chemical reaction or phase change. AH = AU + nRAT LAy
P, .
\{_ﬁ . In case of chemical reaction AH = AU + (An)RT ’ A
{ X b &
X X
(X )
./5‘\ 4 N /
'-.\1 /{ ';:j’\";.’
N\ N
E * A
\ Y # F H'::
(X X
(X ) &
:{"\'p :"._{ _-',;_..
X X
{\_ ,e?ﬁ_ | 'f‘f\';.’
(X X
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w=0 q=AU=nC.AT [AU = nC, AT| AH =nC, AT ﬁ r
[-%
¥
wanl.(T,-T,) q=10 AU=nC AT|AH=nC AT
=PIEH"EI§'E PV'=constant
TV '=constant
TP M=constant
w=nC (T -T;) q=>0 AU =nCAT|AH =nCpAT | .. e
PN, -BY RS .
- E B
.=_L1:__1LL nC(T-T) 8"
(5
- Pil 'l W, Wy
T, ' e
V. PV s jl cadr * p
R(I;-T;) R(T, -T))
- w
T (- T Q-1 SN
Area encolsed in q=-w L] 0
PV-diagram
For clockwise
it is —ive
it is +ive

Entropy {denoted by 5) is state function Tt an mreversible process entropy of tinsverse metemsess but i remdms constant in 3 reversible process

AS = Al =0 for rev. process
AS = J'Er_ A5, =85, >0  formev paecens
T ﬁp—ﬁ_‘zﬁ (o general)

PHYSICAL SIGNIFICANCE OF ENTROPY
One can think entropy as a measure of the degree of randormess or disorder m a system The
greater the disorder m a system, the higher is the entropy.
(i) The entropies of substance follow the order,
S(g) > S(D) > 3(s)

(ii) Ifmore no. of gaseous moles are present on product sude, AS will be +ve (smce gas 15 more
disordered than sold or Hgquid).
J, (iii) Entropy nses with mecreasing mass, other thing being same e g atomucity in gas phase.
_ eg F.o 5% =203 I/K-mole

N, ClL(g) 5 = 223 JVK-mole
N Bry(g) 5% = 245 I/K-mole
N (iv) Entropy mcreases with chemical complexity
Y For CuSO,nH,0
1:\ a=0 a=1 n=13 n=
&, /’ 5" =113 150 125 305
’J‘::q = & 5 ; 3§ - - F 63 C
-, ’:xw"\\{ Fa o % \ L \\ =N . i i \ " P ‘ Fy o .J-f' # : \ ™, : e
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O ENTROPY CALCULATION

Process AS, aAs.
[sothermal AS, =R/ AS,. = - AS,,
: 2 7
reversible
"'QS\‘S lcirll5.l\'1. -P ﬂ'« -'1-1}
b i —a s = — = S - 4
Isothermal A5y, =oR e ASo. T T T
ureversible
Adiabatic AS, =0 AS._ =0
reversible
Adiabatic AS, =nC,fn2 + R A5, =0
. i+ P Sl
ireversible
Isechonc AS, =nC InI:- AS, = _ A5
. Sl i in
reversible
Isochoric S, =nC o2 AS = 2o = Lo
i 1 Tum Tl'n—
ureversible

GIBBS FREE ENERGY (G) AND SPONTANEITY :
A new thermodynamuc state function G. the Gibbs free energy is defined as :

G=H-T5
at constant temperature and pressure
AG=AH -T AS
If [g&.ﬁ]u <0 Process 15 irreversible (spontaneous)
(AG);p =0 Process is reversible
(AG),> 0 process is impossible (non spontaneous)
The equation AG = AH — T AS takes both the factors into consideration.
(AH )1y | (AS)py (AG) Remarks
- Ve = ve Alwayvs =ve Reaction 15 spontaneous
+ e - Always +ve Reaction non spomtansons
+ ve + Ve At low temperature. AG = + ve | Non spontaneous
At lugh temperature, AG = — ve | Spontageous
- Ve - ve At low temperature, - ve Spontaneous
- e - ve At high temperature, + ve Non spontaneous
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THERMOCHEMISIRY
mmamurmcrmnunl} BOND ENTHALPY
Amount of heat evolved or absorbed durmg a i -
reaction at constant pressure. mm#mq:;medmm
one mole gaseous bond mto separate gaseous
ENTHALPY OF FORMATION atoms.
(May be endothermic or exotherm ic) o humm] [.."-mdhuﬂ
Change m enthalpy when one molke of a substance “\of gaseous reactant ) \of gaseous product
s tmd: its constituent elements present m -
* For elements -u{mmm:, AHE ., = AH® (experimental) - A,H® cslcvlated)
Ex o [0#”““ = 8 H®alculated) - AH fexperimental
AR [P, {ﬂ-IH
 ENTHALPY OF COMBUSTION [&cﬂ} [ — S =
Gadwiys oothisr k) ENTHALPY OF NEUTRALIZATION (AH,_)

C‘h.ange i enthalpy when | mole of a substance
15 completely bumt m oxygen

::Czl'fﬁmr*Eﬂzlgj—-MlﬂJ*%ﬂm?ﬁfH[cnmm] ;
AH =Y A H (react )= ) AH® (prod )

s
Calonfic value = =
ENTHALPY OF TRANSITION
Eulha]p:.r change when one mole of one allotropic

. form changes to another.

Cioeetie) G A, H® =1.9 kJ mal™
HO, +HO,. A_H (H0,)
Ho:, SHO,. ACH® (O,

TH(HO,)
H Um 'H'Dm \LH' (HO)

A=B AH=3klma'

D pa .-.,H--mm:mrllh’m""“S“L‘“’l”'“”’M
(1) Hess Law of Constant Heat summation

A, C aH

H-ﬁ AH=aH +aH
A0 B = AH=sH~aH-AH,

I‘-.__._n__E o AHmAMH +«AH=AH«AH. «AH

{Always exothermic)

' Change m enthalpy when one gram equivalent of
ian acid 15 completely neutralized by one g-
' equivalent of a base m dilute solution. ;
:SA+ 5B - salt + water ; aH"_

H,+ O,

+HO
“’lH-—lPH:Caleq"-}?ikqu ,

Incase of weak acid / base or both [aHg| < 13. ?%

-and the difference 15 enthalpy of iomsation of
‘1omisation of weak species except m case of HF

. when jaH-.I: 137 due to hydration an‘

ﬂﬂ'ﬂ.ﬁlﬂ DF .tmmmn ;'.I.H_)
(always endothermic)
Change in enthalpy when one mole of
gaseous molecules converts mto gaseous atoms.

ENTHALPY OF SOLUTION (&H )
[nm be endo or e:mhermlt]

' Change m enthalpy when | mol of a substance 15
- dissolved mexcess of water so that firther dilntion
. does not mvolve any heat change

80y, —5+ 80y . :AH

ENTHALPY OF HYDRATION (AH__ )
{:hr:n M}

:Emha.lp}' rhangf when | mole of anh}'ck::rus saII

- combine with requisite amount of water to form
hydrated salt

4+ 5H,0

CuS0 20

m-r

AHP

» CuSO, 5H,0, :AH |
{yeen sk




ENTHALPY OF HYDROGENATION (4H, )
(Always exothernic)

| Enthalpy change during the complete
hydrogenation of one mole unsaturated
. organic compound mto its saturated
- compound.

urnasturaled ormanic compound i mituraied organe compound

lzorehond] =+  |<bondl
CH =2, CH A

If m a reaction heat of reactant & products are
given then heat of that reaction can be measured

as follows;
(a) For heat of combustion & for bond
enthalpy

B He ) (AHe ) g ™ ) (AH b
(b) For heat of formation

#H‘E{M'Ei]m'z[ﬂ'[t},m

CHEMICAL EQUILIBRIUM

equilibrum state m less or more time.,

WMMMAJ
+  Equilibrrum represents the state of a process i which the measurable properties ke - temperature,
pressure, color, concentration of the system do not show any change with the passage of time.

+  Equitbrmm 15 a dynamic process, chemical equibrmim can be approached from both sides.
v The state of equitbrium 1 not affected by the presence of catalyst. It only helps to attam the

+  Equilibrom can be attamed both m homogeneous & heterogenous system.
MWWWW
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A onsider 3 reversibls reaction,

ﬁikﬂ-#c{'ﬂﬂ
(AT EQUILIBRIUM STATE)
Rare of forward reaction {r,)
=rate ofbackwand reactionr,)
50. 2t equibbrom.
(1) . -
K, T In terms of active mass
eI [R
Ky =
[Pl [Pe In terms of partial
pressire
bt )
Ky = In terms of mole
[Xa'[Xe
fraction

+ Partaal pressure of solid 15 takcen as unity &
in caleulatson of partial pressure of solids, their

mumber of males are not conssdered

¢ K=K(Ip* then K=K
when _*.n,=ﬂ-ﬂ:mK'=Kt
when sn':ﬂ-ﬂnrnxp:-]{c
when an, <0 then K, <K,

. Whjkdeimg.mlta‘uuﬂygaseﬂus
SPECies.

+  The active mass of sobd & pure hauad it
A comsiani quantiy (uniy) becanse i 15
an intensre property

Proci ﬁ ol
|
L]
.
(7]
i
Tame
«  Unit of Equilibrivm constant:

B = (il ™2 Ko m latm™
+  Application of K_or K,
+  More s thevahe of K, or K
moe 15 the extent of reaction.
= Stabbiny of reactant mereases
when value of K decreases

= Stabihty of Product increases
when value of K mereases.

( CHARACTERISTICS OF EQUILIBRIUM CONSTANT )

Equalsbrmm constant depends wpon temperature & way of wntmg the reaction

(i} Temperature:
Let K & K be equilitrnmm constant at T,
& T, then

ol sl

K;) ZMBRLT, T:
{Van't Hofl 2quatiog)

(i) Way of writing the reaction :

For A+B=C+D K =Kithen
(a) r:m.—:mn;&-—l:

() pA+nBenCenD, K=K

Predicting the direction of reaction :

Reaction Quotient () 15 expressed m the sams

way as for equilibrisin constant. except that the
copcentrations may not aecessarily be at

equilibrmm.
Io general for the reversibie reaction :
aA +bB =cC+dD

_[C[[UF
A [aFiB
Al
-[ParlFaT (i ternas of presawe)

I1Q =K, then system 1 m equibibrinm

]fQ:l-I-L_QI then system proceed m backward
direction to attam equilibrinm




when n=2 then K2 =K° IfQ fI'i_lth-m system proceed m forward
darection to attam equibibrmm
"'% then Kz = K3 *  Degree of dissociation (a)
o Mo of moles of eactant dssocksted
Q) Awlh Rk N o roke o vt prese iy
Byl K=K *  Degree of Dissociation from Vapour
=D K: -K,ﬂlﬂl. Pressure
AwaD K =K *K *K, pA=nB-nC
= Dy -Dy
@ A=B K=K u-';—;{ B ]..mﬂq*qu}
=18 -
i D, = theoretical vapour density =
De=C E~=EK then Mabocular weaght
2
K
Am2D “i"m D, = Observed vapour densiry

( LECHATELIERS )
PRINCIPLE

If 2 system at equubtbrium 15 subjected to- 2 change of any one of the factors such as concentration,

pressure of temperature then the equibbronm 15 shefted i such 2 way as to oullify the effect of change

Le-Chatelser's prinemle 1 appheable for both chermeal and physical equilihrimm

‘r

(CHEMICAL EQUILIBRIUM)
8. B 4n =0 An >0 An <0
| No. Effect due to change in Asil As2E B
Al | Concentration | (1) T [A] Forvard direction | Forvrard darection Forward direction
(o) = [A] Backwand duwection | Backward direction Backward drection
b) | Pressure (1) T m presware Unchanged Backward diection Formard direction
{15) + wm pressure Unchanged Forward direction Backvard direction
c) |Tempeatwre | (i) T oo Endothermic] Forward dicection | Farward direction Forward dwectom
(1) T m Exotherue | Backward direction| Backoward direction Backward directson
d) |Dissociation | () T m pressure Unchanged  [Dussociation Decreasss|Dicsocmbon Increases
(i) T mvohme Unchanged Dhasociation Increases IDm::ubm Dt sates
2] | Mdixmgof (1) at constant P Unchanged Dhaseciation erenses [Dhsociation Decreates
L meft g {1z} & constant V' Unchanged Unchanged Unchanged )
CHEMICAL KINETICS
; _ Rate of disappearance of reactant [appearance of products)
W el A Stnichiometre cosfiiclent of reactant (products)
For a reaction :
aA+bB —s oC+dD
1A _1(dBI)_1(dCl)_ 1(dD]
Instantaneous rate : ;[ & ] b{ ] c[ = ] E[ & J

e



Relatonship between rate of reaction and rate of disappearence of reactant (rate of appearance of

product)

& Average rafe: =

Congernaixm
al 1escan

L )75

Graphecal method for determmng mte

s, A, 1 )

Al £

At d

s

Comcentralon ol
procos

At

=2

&=

O e e
2 1 2 11
F  Important kinetic expression for reaction of tyvpe A— B :
Order Zero 1s1 Ind nth
Differential | Rate=k Rate= kfA] | Rate=kA] | Rate = KA}
rate Law
[ 1_1 B O O
e Aiile )| e=tngs | ®=RiTAg | ™ “ﬁ[ﬁ"ﬁr]
rate law
Al 2 1 _1 [zt
Half lfee (t,) | =3 L S Ya = ALK 7 u[ A
fta) =151, te= 2t t, =31, = (2 D 1y
#  Graphs of various order
Order Rate vs [A] [A] ws t log [A] vst 1—;—] vs t
log 1Al "
Fero order Ruw Wh .
I
) T A
logy A
First order Ra L L
(Al
1A i x t 1
i 1 t
A log 1A
Recond arder Rase :‘ ‘I'J°'T
Al — : i

Temperatire dependence :
Arthemious equation | k= Ae™™
E, = mmimum energy over and above the avg. energy of reactant which must be possesed by

reacting molecule for collision o be succesfil

hk-hﬁ—%

=3
FE
]
=

—||_
Lol

e




v
Solid State

Packing efficlency
s Volume occupied b‘r’l"ﬂ-lphﬂ!i in the unit cell
- Total volume of the wnit cell

=104

# Mass of the atoms af unit cell = Number of stomsin & unk cell ()
* Mass of atom (M.}

# Mass of ome atom = Hﬂ','mm ||
Avogidra's constant ”'I*]
» Density{p)of unitceliofa cuble rystal = —2— = 241
Va Ha i H
o Bragg's equation: 2d sinfl= na
# Mumber of octahedral voids = No. of particles present in the clase
packing
o Number oftetrahedral vaids = 2 x No. of octabedral voids
Characteristics of Different Types of Unit Cells
Crystal | No.ofatom(s)/ | Packing | CNo.| Relationin
unitedll | efficiency dyaandr |
st | 52.4% 6 | r=dil=all
bee 2 6% | 8 |r=d2=\laM
fee 1 % | 12 |r=d2=af22
Vold Radius Ratio
Triangular 01552 " <0225
Tetrahedral 02255 <0414
Octahedral DAlS <0732
Body-centred cuble | 0.7324¢%r < |
Salids on the Basis of Electrical Properties

» Conductors : Electrical conductivity, 1010 107 ohm " m !
# Insulators: Electrical conductivity 10-®to 10- ¥ ohm 1 m !
» Semiconductors: Electrical conductivity, 10-#to 10% ohm ' m~!
= n-type semiconductors : Group 14 elements doped with
group 15 elements, free ebectrons increase conductivity.
- p-type semiconductors : Group 14 elements doped with
group |3 elements, holes increase conductivity.

4
Solutions
M
* Molalit (m) = Mlarity (M)= ————
oy T

# Henry's law : p, = Kyoxy : Ky increases with increase of

tempersture implying that solobility decreases with increase of
temperature at the same pressure.

# Raoult's law : p, = p/x,, this law is applicable anly if the two

companents form  homogeneous mixtare,

= Dalion's law of partial pressure: p, .= p, + py +.. p,and for

o companents sy, = B + (35 - P

A = Binteractions = A - A
und B - B interactions.

Ideal and Won-ldeal Solutlons
Tdeal Solutions Non-ideal Solutions
Pr=Xp" i py =5y Pesptip ey
uim’nlhvmh.u ﬁﬂm'u.ﬁum"ﬂ

A~ B imteractions = A - A
and A - B interaction.

Non-ideal Solutions Showing Positive and
Megative Deviations from Raouil's Law
Solutions showing Solutions showing
positive deviation negative deviation
A-Be<A-AarB-B A-B>»A-AwmB-B
interactions. imteractions.
Mllm}ﬂ,ﬁ.ll'-mu) Mfﬂhx’ﬂ.&'fm&cﬂ
P2 B%) h<hy

Colligative Properlies
* Relative lowering of vapour pressure:(p * - p, ) /p " =x,
¢ Elevationinboilingpoint: AT, =T, - T\ =K;m

+ Depression n freezing point:AT

Pl -TeEm

# Osmotic pressure:n = CRT=(n/V)RT

van't Haff Factor and its Significance

Observed value of colligative property

Calculated value of colligative property
» Forassociation of solute:nA —(A)
Degreeofassociation (o) =(1-f)nin-1;i<1
» For dissociationof solute: (4] —nd
Degree of dissociation (@) =i-1/n- iz 1
#» Modified colligative properties:
Pi =Pa/Pg =ixgi ATy =iKm A= iKmem =iCRT




lonic Equilibrium

L4

ions in solution

(1) Arrhenius theory of electrolytes.

(111) Acid & Bases
(a) Arrhenius H™/OH™ theory.
{(b) Bronsted lowery - protonic concept.

The coneept of ionic cquilibria as equilibria involving

i I )
(i) Ostwards dilution law for weak electrolyte K, _-'Tu__.])(i]
L]

(c) Lewis concept - electronie concept of acids and bases.

v

g

Some basic concept
pH scale : pH =— log[H™].
(i) Water as amphiprotic solvent,

(il K [H,0] = K /[0

¥
Homogenons lonic equilibria

(i) Acid/ base equilibrium

I|I~E +K,,
(a) Strong acid [H']=¢{2+ LI Ky se=conc, of (acid)

(b} pH due to polyprotic weak acids

{¢) Weak monobasic acid [H'] =K, ¢ (ifu<0.1)
(d) Mixture of S.A. & WA, —

(e) Mixture of two WA, [H7]=_|Ke;+ Kyer

salt
acid

(f) Buffer sohutions : pH = pK, + |ug|
] - il ,_S.I_EI,_L
pOH = pKy+ log | hm]
(g) Sal hydrolysis — (W.A.&S5.B)pl I=—;1 pK,~ pK,+ loge)
(WB&S.A)pH = %muﬂmb- logc)

: Lok c
(WA.& W.B.) pH =5 (pK,, *pK, =pKy)

(i) Autoionization of water : K, =[H"][OH"].

(iv) Change in pH of neutral Hy0 with temperature.

L
W

Heterogenons equilibria

Solubility of sparingly soluble salt's

(AB, AB A B K., = (S )XY
{1) Effect of pH on solubility.
(1) Simulinecous solubility.

L 4
Application of both heterogenons and homogenous equilibrinm

(1) Extent of hydrolysis in buffer solution,
{i1) Change i solubility due 10 complex formation,
{ii1) Solubility and hydrolysis.

uve



Inorganic chemistry
Classification of elements

1 CLASSIFICATION OF ELEMENTS
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Classification of elements

Some Important Increasing Order

SIEE AT UBL])
SERDLIUL 150 | s (WL SLIH]

SASEAL|
S S|
S5 AL
SasuRlie(] e=fijansocd o] —

SREEAILI]
SAFUEI|

SSSEBLID(] 4——— AQLojErs [PuLY |

SR SR
appapiLy |0 et
S BERALIN | a—sR I 1 AU OE)S PRIy |

SR SR
SRTRRLII[3 A | 5 20T (UL Lok )

5 SRR | 53] PLIOOIED [0 AJIES [ELLE ] SR SRR || SPE] Al
SETERLIN(| s o ANjigE)s L] ik h b g

SR L SpOe A0 |0 Juans STy ﬁ
ISR | — DR N0 O ERREIUD DS FOSERLN
EIFEALIN] - SSPUND JO L SIRIELD SR B R | m
Lt b T SEPLPAL O JaoeeLD s SRERALIA(]

SO AL - w2 Eoon ) Aouapen S ES L) D

SIST AL + (g} abmp resp angoey T i m

SOEREDINLL| - P2 m._h.._.mmcum .m..m_._mﬂ_ﬂ._u_@_._.._
EDEERII0[] -+ BN Uy SRR B0 ]

SR ALIU] atmjeu Bumsppg it
5IRALINT] - IR Mg SRS

SNSRI L | SapIeL] O @) eIRyD JUS{en0)

BRI AJILIL| j L a)

SR RLIU] - i e auoay oo g

SAEHALHU| + [Eru=goc o jes |
s — saoiyad T

SNdOHD ANY AOIHAd FHL NI STLIHId0Hd INTHAAAA 40 ANTHL TVHINTD

73 £/




Periodicity :
Repetition of properties after regular interval is
known as periodicity and these properties are known

as pertodic properties.
L Effectnee Atormic Murnber
2 Aorrie Radne
3 lonisation Potential
4 Blectron Affirdty
5 Electro Negativity
ATOMIC RADIUS
Distance botween centre of nucleus 1o outermost eler-
o
Accurate value of atormic radivs cannot be measured
therefore operational definations are userd.
i Cenadent racius
)  Metallic radios
i)  Vander Waals radie
A S
Vander wall radiue mamby used for noble gases.
Electron affinity & Electron gain enthalpy : Tuiiﬂwm;ilnclﬂmmdpﬂrufe‘mw:hlﬂim
ﬂmwnﬂ‘nlm Hlectron gain enthalpy Fmﬂ*::::
S 0 EN=Z,

amount of energy | Change in anthalpy
released when an ° | when ane” is added 10 2 EN,-.L
is added tosolated | Bolaled gaseous atom. .

& 1
Gaseoltis akm. AH_ =H, -H, @ EN:E_]
Successive electron affinity :
) EN=l+ichage.
- I= 3=
P Ag—1 A —oAy 5)  EN = % s-characters of hybrid orbital
ihwmmﬁ.ﬂr_hﬂuﬂm Paviodic trend :
EALEA, . shwens endothermic 1) Generally decroases on meving down the group
21 Generadly meroase when moving beft 2o right in the
Factors alfecting : peniod.
1} EA=Z,
e EATE:E Application of electronegative
{3 Nature of subshel i/ iy ot g
H] hial and full filled AEN = 0 I"l-tln-pﬂh.l’hﬂlﬂ
Periodic trend : AEN =2 0 polarbond
(1] Generaly decreases onmoving down the group {2} Bond parameter
(71 Generaly increase wiven moving kit 1o right in the AENT  loniccharacter
perind. AENT  bondlength +
ﬁu:lhwwmgwa-m AENT  bondstrength
period element except metal
OeTecSecs, l«Be<F<Ol 6 Maivis of oikde & ouhetd

EN. of contral atom neresse acidle chammeter ol
Note: JIE,|=[EA,| and [EA,|=]E,| ondicle and oxyacid increases




Some Impartant Increasing Order

.L Abundonce of Elements 4. Eleciron Affinity
ii) Eberments on earth crust - Fe, AL 5.0 il 1.BrECI
(B} Meialboneartherast -Ca Fe Al (i) Cu, Ag; Au (BA of fu bvery high = 207 k) mal™)
(5} Non-metals -5,0 (i) A5 EQ
In atmeosphere - QN ) N. PO, 5
Inunivene +He 5. H 5. Electonegativity
2. Atomic | lonic Size fil AsB3.Cl
il Mg™ Na".F O N (i) LB CLF
fiii) C N, QF
{Hing - lsoelectronic serles )
. A 3 6. Hydration of lons/Hydration Energry
fi}) Ca*, &, Ct 5 il Ba™, 5 Ca”, Mg™: Be™
0, G5, 5 {i) C* Rb* K Na™ Li"
i) B, Be, Li, Na i) Na=, Mg, Al
BRERFL 7. lonic Radii in water
3. lonization Energy () Cs*,Rb* K" Na®.Li*
i) Na ALMg S i) L°, Be™? :
e {iii} MWa™, Mg™= AI"
{8} Li B, Be.C. O N.F Ne He (IFIP)
{ii) Be, C, B, N. F O Ne, He, Li (I LP) 8. Molar Conductivity in Water
L. J L Na™ K . G y
- - A3
INCREASING ORDERS
L Decreasing ook scee Mg*< F-<Ba*<F- 17, locrepsing molubality  BelOHL< 51 Iecreasing stabolity of oxoscads H 50 <

1. Increasing scadic property Lok Na 0, <
P 0= Mg

3. Increasing first wnization potential Mg<
Al Bic Na

4. Increasing band length F.< X< CL< 0,

&, Incressing size C17< § < Ca*< Ar

&, Increasing acid strength HOIO < HOKD, <
HCI0,= HCIO

7, Increasing homed strempils HCl< HBr<
HE< HI

M. Increasing owulation numher of idine i<
HI< HID <101

9. Increasing  thermal  sibality  HOClH
HOCHD, = HOCIO = HOCHO

10, Incressing bond enthalpy M < 0.< E C1,

11, Increasing acidic charscter C0,< N.0<
50, 50,

12, Iscremsing done size N©< Na's F=
=< Mgt

13. Incressing bassc character Mplk S0k
KO M0 Cu 00

4. Increasing eutenl of hydmlyas OC1<
MpCl= ARCE < PCL= 5iC],

[T SCEUU R R iee Ul S0 L TR TPy S0

MetOH), =< CalOH), < BaiOH]),

8. Incressing hasicity Buﬁ.;llllz-\: M#l]]-li]-c
ColCH), = Bl OH],

I%. Incremsing hydrabon of joms Be't<
Mgt Catoe S5« Bt

I lecremiing feactivily with waler Be<
My Cae 8r< Ba

3. Imcressing resctivity towands air He<
Mg Ca< 5r<Ba

3L lecressing solubility BeS0 < MgB0 <
Ca%0 = 580 < Bas0,

53, Iecreming wonkc chamcter BCL< ALCL<
Gal'l

1

M, Incressing strength of Lewis scid wilF =
BCl < BEr,

38, Incressing strength of Lewws acid AL =
Gal't < o],

36, Iscremsing  roducing powos Ge(Cl<
Sl PeCY

37, Iecremsing  oooidinng  power  Ge(l <
SnCl = Pl

K. Increming number of hybrd orbnals of
<5< 8n

H,Se0,< H, Ted,

5%, Incremsing chectron offinity F< C1< Bre |

81, Imcrrasiog n:hu:q power  HF< HCl=:
HBAr< HI

&4, Imcreasing sffinity for hydrogen F,< CL<
Brxl,

55, |ocremsing scudity HF< HOl< HBr< HI

86, Increasing mefting pomt HF< HCI<
HBr= HI

57, Imcressing boiling point HF< HCl<
HHe= HI

S8, Imcreasing  stmbality  WFO< HOW <
HBr( = HIO,

59, Incremsing covalent charscier Tl <
Tl < TaCl,

6. Imcreasing  magnetc  momest Tet<
Nif*c i Cof*c Zn

1. Increasing ionic character VCL= VE<
Vi,

6L lecreaueg clectmpositvity flg< Na<
Curcl

63, lecrezsing denssty Fe< Ph< Al< Au

B, Imcreasng base clomceristics Lo0k




15, Incrcusing arength of bydrogen honding
(X H-X)ORS<FCieN

16, Incremsing sonic radii in waker Li*< Na'<

K*= Rb"<C3*

muolar

Li*= Nat< K= Rt Ot

18, Increasing reactivity with water Li< Na<
K< Rb< Cs

19, Increasing reactivity with hydrogen L=
Ni= K Rb= O

. Inoreasing meiting poind L Na< K<
Rb<Cx

21, Increasing hasic nature of hydravides
LidhH= NalH< KOH< RBOH< CsU#

1L Fncreasing thermal stability of hydross
ides’ LeOFRC NaDH< KOH< RO«
20k

1% Incrensing covalemt chamcier  LiCk
LiBie= Lal

7 W waker

4, Incrensing  jonie.  chamcter  CalCl<

el < MgCl, BaCl,< Secl,

18, Increasing soluhility BeCO < MpCO <
Call0 < BallDy,

6, Increasing  solubility BeFr  MgF <
CaF < HaF

) @

B, [ncreasimg basicity F= Cl < Br= 1~

K1, Incremsing hasic strength Foe< OH-<
NH7=CH,

EL Inoreasimg boiling pont NH,< PH<
Al = ShH

K3, |nereaieg wiization energy Be Uz N2 O

B Increasing  thermal  siahility  BeC0 <
M0 < CaC0, < Bal),

B5. Incroasineg paramagnetism Coc Al N< O

B&, Increasing ionic chamcier LiEr= NaBie
KB RbBe< CsBr

?%Q*’X XXX

3m, lmh.li::h.“ml'ﬁ M!.l-C
Sh < FH,

40, Increasng ibermal swhiliy NH = AsH =
Shil < PH,

A1, Incroassng acidic strength HND, <H PO, <
Hyhally= Hy 5000,

41 Inereasing  solubility i
HNGLH,PO,< H,As0,< H, B0,

43, Inercasing onder of +5 oxadition stabe
W< Pe Aw< 5hoamd Bi

44, Increasing entent of bydrolysis NCL<
PO =< AsCl, S0 = BiCl,

45, Increasng stabality of hydrides B 0<
H,5< H.Se< H,Te

48, Increasng polsonous narure H 5= H Se<
H,Tes M, P

47, Increasmg acidic sirength B 0= 1,5
HSes H,Te

4B, Increasing sirengith of osoackds H S0
H Sl H, Tel),

4%, Increasing stability of oxoacuds H S0,

H Sl = 8T,

wniEr

&0, 1 g strength of oxoacids S0, =
HSe0,< H, Ted,

BT, Incremsimg  hydration  enerpy  Be'ts
Mg O < B 5

8K Increasing bond angle NH,= PH,< AsH,
B0, Incrensing bund amgle NF < PH < AsF,
M. Incrensisg bond angle HLO- 5= H_Se
91, Increasing bond angle NF < NOY,

2, Increasing hend angle NO, < NOL< NO),
83, Increasing bond angle NH, < NF,

84, Incrensing bond amgle PH, < PF,

5 Increasmg clectroncgaiiviry 07 Ok 0

Chemical bonding

. IFETCINE DARIC  CRHPRCIENEIES  LILF
Bt < B0, = 00,
84, Incressing elecimnegativity As< F< §< 1
. |mcreasing sonization ezergy M O< F
67, |mereasing nlomic sye §< (0 Se= O
88, Increasing acidity HOCH: HOBr< HOI
a5 h;_n'n;tnn'q“:sdﬂicl:q‘t}ll-l:c
T Inceeasing thermal sishilny HF< HCl<
HBr=< HL

TL. Imereasing bomd enthalapy No< O< F <

a,

T leecreasing melbing point CaF = Call <
CalBir,= Cal,

. Incressng enidizing power O 5 Sec Te

T4, Imcressing oouudizing power F< Cl< He< |

76. Increasing single bond lengih ¥ — %< O
=< F=F

77. Increasing stahility of hydrides Lil<
MaH< KH= CsH

. Decreasing pH of agecous solution of
LiC*L= Bel'L= MgCl= AN,

™ Iscecasing acidic oiide Al 0= Mgl<
g'i:lltriﬂll

CH,C1= CHOL and CC1,
7, Docraasing jose nature: MO MO
MCT,

i i strengih of Hobonding: 0

FOES&N

9, Increasing M — 03 band length: N0, *<
MO, and NO,~

1o, ncreaseng bond  onder N
0,0, < 0"

Fi=

VALENCE SHELL ELECTRON PAIR REPULSION THEORY

Q

Gl by Pyt & Gillesle to i shapoe of acderile.
Shape of molecule define on the basis of electron pairs oriendation present on coniral atom.

Blectron palrs present on central alom repel eadh other therefore these electron paitr ocoupy such pesition
on cemitral stom; wiere they experience minimurn repulsion al maximum possible distance three dimensionalhy.

Q
o
o

Ovder ol replusion = | lrln = Ipbp = by | | mbemb > mibeshs > shesh | o= sl e s = s o)

TYPE OF HYBRIDISATION & POSSIBLE STRUCTURE

T ———

1) epbnybricksasion

| ek, O, CS, B0,

b sp™ hbricksation
{bisp”

ba Lo s 6 e [ee

[N}

fehspbybridsation

BE, AlCT, Bef,-
m.'_‘ ml" ul

1

Eo
-

bt sp'dbaybridisagion

{ehap'dH bl ion

OH,, 001, POy, 0,7, NH,', BF, 50, Ay
NH,, PF,, 00,7 HO", PO, XeQ, NCH), CH,T

HO. N,
OF, Q0. 5, I

Jabsp'd hwbndisation

s bridsation
[Apr R —

PO, SOF, Ask,
SF,. PR Ask

b s hybridisaton
st “usbrutisation

m Boad| o RS W
- e |

lehsp' bpbricisation

XXXXXXXXXX,

AN

OO

LNIIIIILINS
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DiPOLE MOMENT

Measurement of Polarity in a molecule
; debre = esiecm)
m 1D = 107" esuem

- {A) identification of polar or Non-polar molecule.

Mokecule - Symmetrical distribulion of electron clouds Nonepolar
”
;< Diatomic Molecule

%@XKXVQ@%MXKWXK{WXXX %

Molecule : Unsymmetrical distribartion of electron cloud- Polar

{a) Homoatomic  AEN = () — j = 0 — Non-polar

" H, Fy, O, N, eic.

< ) Heteroatomic AEN 2 0 — ji_= 0 - palar
HF > HCl > HBr > HI

Polyatomic molecule :

1 =+ Vector sum of bond

b~ D conts

Important Order

KH,; > Nl > NBry > NCL = NF;

NH,>SbH,>AsH, > PH,

HO>HS

CHO > HF > CHBe > CH)
\_ CH,Ct > CHCL, > CHIGL > OCL,

,

Increasing order of solubility

) BaCO,. 5CO, CaCO, MgCO,, BeCO, Eg. (1AF, > PYCL > POC, > P,

(i) mmmmm {Anion size? , cov. char T, sohibility )
i BaS0y,, S50, CasS0,. MgS0,, BeS0, fi) Fe*{0H), > FeJOH),

M) Li,CO, Na,CO, K.CO, R0, C5CO, (+)changef, PP, CC 1. sohbilty 4
) LiOH, NaOH, KOH, RBOH, CsOH fii) Z9Cl, > CACL, > HgQl,

{vi} LiF, LiC1, LiBr, Ld z,t. PPt CC T, solubility 4

v} LiF, NaF. KF, RbF, CsF {iv) Na SO, > MgSO,
(vili) BaF;, StF,, MgF,. CaF,. BeF, (+)chargeT. PPT, CC T, soubility +
i) ZnQ1, » CdQ1, > HaCl,
ManEResOs 2,1, PPt CC 1, soubilty
i) NaCl = CulCl
PPT, CC 1, solubility 4
(vil) AgF > AgCl > AgBr> Agl
Andonic Size?, PP 1, CC?, solubility +

202
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0 ¥ s suciophilic substitution reaciion,

Iesermandiate

BeCl, + ZHOH —+ BeiOH), « 2HOL o | sy, BIOH), + 3HF

Bleoak doum of & molecule through water and Tosmathon of new prodieet is e 5 bgdrolab.

,H!:EH,ma_.H_ﬂ_M_x—-u—cﬁ-th

Presiact

= L n== Iy mam s
NF, + HOH ——» No hydrotysis

ALC, + 12HOH—s 4AROH], + 3CH,
Mg, + BHOH—s IMgOH], + 2NH,
AN 4 ZHOH  —— ANDH), + NH,
CagPy + 6HOH = 3CalH]), + 2PH,
L+ HOH  —— LiOH+H,

i | CaH, + 2HOH —s CalOH), + H,

BCl, + SHOH -+ BOH), + 3HCI | 3BF, + 3HF —» 34 B NCL + HOH — NH, + 3H001
3BF, + S0 — JHIBE, PCL + HOH —— HPD, « 3HA
AL, + IHOH - aHC!
ARCED, + Trarnlly Ty ol AsCl, + HOH ——s AsiOH), + HC
SICL, + 4HOH — SIOH), + 4HC! SO, + HOH —* ShOCl + ZHO
SiF, + AHOH — SHOH), + 4HF fpiactial hyelrehis)
SF, + HO —+ No hydrolysis 25iF, + 4HF —+ HTSIFY BICT, + HOH ——e BOC + 2HO
due o crowding Tyedrolysss followed by wr:,m
m*m{mm” No hydrolysis | Leswts acid-base reaction, PCL+ HOH —* POCL——rHFO,
Comdiions pavial  enenpletely
 character containing salt AN+ HOH — HX 4+ HOA
Be,C + AHOH —— ZB«0H], + CH, AX, + HOH ——s 3HX + HAD,
+ + AHOH— 2MagiOH),
MalCy ¢ *SH N aes HoH — SHX HAD,
Cal, + ZHOH —» CalOH), + CH,
— _» THX +HAO,

AX; + HOH

ek, L2 e o 24 4 L0,

6XeF, e 4Ka +2Xe0, + 24HF + 30,

partial

Some Important Increasing Order

Ty

il S0, €0, NO, SO,

“I M@- Maur m:' F‘DI.

() HCIO, HCIC, HEW0,. HEID,
il CH,, NH,, HO HF

tw) SH, PH, HS HQ
fuil HO HS, HSe HTe
{wn) HE HCL HBe, HI

fviul InCY, GalCl, AIC,

e} s.F,, mi, BB, B,

i 1_1&, MaB, HBr, Rhlly, CeBer

(s} LiF NaF KE RbF CoF

f) BeCl, MgCL CaCl SiCl BaCl,
(e BCL, AICL, Gall,

v} VL, VO VL

fwil AIF, MgF, NaF

{uii) AN, ALO, AIF,

{eid HI, Hie, HOL HF

fix) CulN, AgClH¥

ixh AgCl KO

[ m-gc.i-i CH,
(il H.O NH, CH, CO,
fis) H.O, NH, CH, BH,
(+) NOT,NO, NO.*
(v HSe HS HO
i) AsH, PH, NH,
fvi). PF, PCL, PB, PI,

MeO;

it CrO®,
'H' M‘S—I mi-

liah WO, Mo, T,

lo) GeCl, Sall, PBOI,

bd 1, B, OLF,

i) Ze? Fel PY Cu™ Ag”

Mo, MM, opr 4 ¥e0F, HML o o Xa0F, B oLF 4 a0,
cutmpete

OO
R

‘-./-' . - ? F i
}\ \/‘\>z )\/1\

{{ f \(’j _--";}\./'/i
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(i) NF,, NCL, 2 . ;
s 7. Melting Point
fh My HEG, N, {i) Cs, Rb, K MNa,Li
B T OF O (i) Mg Ba, S, Ca Be
3. Basic Character fiii} - Caly, Cabr,, CaCL. CaF,

{)  LeOH, NaOH, KOH, RbOH. C=0H
(&) BelOH), MglOH), CalOHI, BalOHI,
() Boy MgO, Cal 50
{v) N Mg0, 50, KO, €20
{v) €O, B0, BeD LLO
fvil S0, ALO, MgO, NaO
teilh SoH, AsH  PH, NH,
tval] F—, OH— NH.-, CH -
4. Thermal Stability
t“ L.ZCGF Nazml' H".m.l %!mﬁ’ cai.‘ccll
(5) BeCO,_ MaCO, CaCO, BaCO,

{#v) BeCL, MgCL, CaCL, SeCL, BaCl,
{w}  Nal, Nablr, NaCl, NaF

(vi) CeCl RbCL KCL NaCl

{ui) - ANCL, MaCL, NaCl

i) Ma, Al Fe, Pb, Au

(i} Li K Ma Bb. Cs

(it} Ca, Mg, Be, 5S¢, Ba

{r) Higheost Density = Oaflr

v} Lewest dansity = H

(i) Matal of lowest Density = Li

fii) BelOHI,, Ma{OH),, CalOH),, Sr(OH), Ba(OHR | o piiing Poing’
Polarisation i) BsH. NH. S
() LIOH, NaOH, KOH, RoOH, Cs0H ,LJ :[‘3 H_&_ ﬁ% "
fvl Be30, MgS0, Ca30, (i) l'lh,i'lgh.l'ﬂ.-HF
fwi] CaH, RbH, KH, NaH, LiH {w) NH, HE HO
{wi) SbH, AsH, PH, NH, fw} I-h.iie.ﬁu._ﬂt
[ H;TI. H:Sl H:._.S. H—.O W HO DO
| W A | il H, 0 B,
- [
10. Electricol Conducticity 16. Strangth of Hydrogen bonding (X...H-X)
Cx. Pt Fe. Al Au, Cu, Ag W SCNOF
11. Reactisity with water W RERAN
Li, Na, K, Rb, C : e
O LiNa, K Rb,Ca 17. Rosesivity with Hydrogen

fn} Be Mg, Ca. 5r, Ba

12. Estent of Hydrolysis
i} CCl, MgCL, AL SiCl, PCL
i) BiCl, SbCL, AsCL. PCL, NCY,
13. Bond Strength
(iy HI, HBs, HBC1, HF

:dj—}—l.—;Z—Er.—;JAEI,—;aF

fil) N-NN=NN=N

(e} As—H Sb-H P-HN-H

() N NSNN

v ©F 050,07 0F
Lil, LiB:, LiC, LiF

fvi) F,, H, O, N,
(vid] NOr, NO, NO*

() I F, Be,CL

(x} 0-0,55

(i) F=FO=0,N=N,C-~CH=H

Nal, NaBe, NaCl, NaF
C2ClL RbCL KCL NaCl  Ba0, 5¢0, Ca0, MgD

il Cs Rb, K MNa, Li
i) Ba, 5 Ca Mg Be
Be, Mg, Cs_ 5r, Ba

19. Bond Langth

f N,O.F,CL
i) N-N C-N.CC

) 100, 3’:—0. -¢-0—

(] NO* NO NG

i) 0.0, H.0, (00 bond length)
il €O CO, COff

bl No N7 NZE

fvii) Oz, 0, O, OF

li) HE HCL HEe, HI

o



14. Reducing Power

() PbCL, SnCL, GeCL,
liip HE HCL, HB:, HI

(i) Ag, Cu, Pb, Fe, Zn

(vl HNO,, HS0, H.S
v HPO, HPO, HFO,

15. Covalent Character
iy Ld, BeCL, BCL, CCl,
(1) SCL, CaCl, MgCl
() TICL, TuCL,, TeCl,
(v} LiCL LiBe, Lil
(v Na, O NasS

i

(il
i}
{nh
v
v}

{i)

CCl, CHCL, CH.CL, CHO
NE, NH, H.0,HF

Cis-chloropropene, Trans-chioropropens
p. m, e-dichlorobenzens

CH|I, CH,Bs, CH.F CH.Cl

NH,, 50, H.O, HF

HS, HO

vz} HI, HBr, HCl, HF

() AF, ALO, AN fix}  PH,, ASH,, SbH,, NH,
(vii} HF HCl, HE«, HI )L x HOHO,
[ Group15 Bond angle Group 16 Bond angle )
NH, 10748 HO 10428
PH, 9336 HS 9=
Ady 91745 HiSe 91>
SoH, 9118 HTe 0.5
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NITROGEN FAMILY

Nitrogen and phosphorus are non-metals, arsenic and antimony metalloids and benith i a typlcal metal

Except nitrogen all the elements show allotropy

Bismuth hardly lorms anmy compound in =3 cotdation state.

Thi only well characterised Bi (W} compound is BiF,.

In the case of nitrogen, all cxidation states from 41 to 44 tend to disproportionate in acd solufion. For

example,

fil 3HNO, -+ HNO, + HO + ZNO

6.  In case of phosphons neardy all intermediate oxidation states disproportionate into +5 and -3 both in alkali
and scid

7.  The oxides of the type EO, of nitrogen and phasphons ane purely acidic, that of arsenic and antimeny
amphoteric and these of bismuth predominantly basic

H. In case of ritresgen, anly NF, i known o be stabie

9. Trihalides except BIF, ane predominantly covelent in nature.

= The only well characterised Bi (V) compound in BiF,
= Al the oxidafion states from + 1 1o + 4 tend 1o digwoportionate in addic sokution -
enp: 3HND, —— HNO,_ + ZNO

1 All the intermidiate oxidation states dispropartionate nio +5 and =3

4H,PO, ——» 3H,PO, + PH,
HPO, ——s HPO, + PH,
= Hudride of 15" group elements :
NH, > PH, > AsH, > SbH, 2 BiH, Basic character
MH, = PH, = AsH, > SbiH, > BiH, Stahility
PH, < AsH, < NH, = ShH, < BiH, Boiling Point
PH, < AsH, < SbH, < NH, Melting Polnt
MNH,>PH, > AsH, =5, Bond Erergy
Pentaodde of 15* groupelement isacidic. N0, PO, ane acide. As 0, . 5b O, are amphoteric with BLO, is basic

= Trihaide of 15" group dements are covaket except BiF,
Oxicdes of Nitrogen

LN R 8

I

Oxidation Common Phvsical
Formula _
state of methoeds of appearance and
nifrogen preparation chemical nature
Duutrogen oxide N.O 1 NHNO, i,, Colouriess gas,
Mitrogen oxade] ' NO+IHO neuiral
Nitrogen monoxide | o o INANO, + 2Fe50, + 3,50, | Colouriess gas,
[Mitrogen (II) oxude] +Fe(50,), + NaHSO, peutrl
+IHO+ KD
Dinitrogen womide | v 3 |Wo+N0, == W0, |Bleseld
[Mitrogen (OT) oxide] | acudic
bluse hgud (—30°C)
}'.'u.-:c-g:u dhoxide NO. 4 IPHNO,), aTIE brown gas.
[Mitrogen (TV) oxide] ) 4NO, = IPbO = O, acudic
Dinitropen tetroxide 24 MO, ':.E_’_.—”—h MO, Colouriess sobid/
3 u N.O = B :
[Mitrozen (TV) oxdea) ey Iquud, acdac
Dimitrogen pentacsade | N0, 5 4HNO, - PO, colouress solid.
[Mitrogen( V) oxide] 4 4HPO. + TN.O acidic
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CoMPOUNDS OF NITROGEN FAMILY

Preparation +

W ZNHCE + CafObH) —> Call, + ZNH, + 2H0
@ Mg, +HOH—s MgiOH), + 2NH,

Coloriess, Purgerst Sl bavic 11 ratur fiqpsfied snsy. ses s cooban]|

= 4NH; + 30— NGO

L T

e @ stieg L ANH, + 50, —2M g0y 4 GH,O

Uty
— SN, + 30, — GNHOWN, == |

M%?w e L mﬂ;ﬂ—- N, + 3HO
- H T
Reaction with FeS0, :
m FeSO, + 8 HNO, —+ FeS0), + 2NO + 4HO
i Reaction with non-metals :

Ostwald’s process :

Ul £3H, (g} » 50 (g —Cpime=s L SN0 g) + 6H.Dig)

il _":‘1'0-,5} + ﬂ:{g]‘:!!\"ﬂ:igl
fiii} N0, (g) + H, O ) THINO (2}« NO(E)

Properties :

HNO,, nitric acsd was earlier called as aqua foris

{rmeaning stronsg water).

li |.|.-.'|.|.l||l‘r aoquiTes l,,le“uw colour, due io its decam-

position by aunlight inte N0

3Cu

Mor-metals converted imto highest covacids sy hol
and conc.

HNG, . MO, gans i evalved (5 10 HS0,: PloH '
C 1o HOO,, 1, to HID, As nulﬁl?h.hﬂ‘ o
H,5b0, and Sn ta HSa0y). Most of the metals
excepl noble metal are afiacked bg.'l'ml)‘. h plenys
double role i action on metals, i, if acts as on
acids o well oy an axidising agent

Reaction with metals ;

+ B Hmlﬁillﬁl " m‘”% w ZNO - ﬂH?ﬂ

Cu + AHNO fconc | — CuiNOy, + 28O, + ZH,0

T ks k-l et S 4Zn + TOHNO jdihte) — 4 ZoN0 ), + SHO + NO
In + dHNC jeonc y < ZnlNO, + 2H,0 + 2N,
Concentration Metal Main products
of nitric acid
Mg, Mn Hy+ metal nijrate
Viery Dilute HNO, Fe.Zn, 5n  PHMNO: + metal nifrate]
Cu. Ag. Hy Mo reaction
Dilute HNO, Fe. Zn MO + metal nitrate
Ph, Cu, Ag NO + metal nitrate
N + HeSn0a
Conc. HNO, S Metastannic acid]
Conc. HNO, Fe, Co, My, Cr, Al rendered passie
Preparation : Physical properties :

i Caf, + 6H,0 —* 3Ca0H), + 2PH,
(5 PHJ + NoOIH == Nal + HO + PH,

Laboratory

preparalion :
P, + 3Ma0H + 34,0 ——e3NaH PO, = PH,

LUlses :

For thee production of smoke screens

As Hni.rnn'n. sl in deop seas and ooesny.

Colouriess gas having smell of garlic or rotten fish,
slightly schuble in waber and slightly hasvier than air.

Chemical properies :
lif 2P & 40 —a Pl + 3HO

fif APH, — P, +6H,
fiiih Pl » 00 —= PCh + 3HO

d-BLOCK (Transition Elements)

DEFINITION

Trasiticon elerments ane those

has partiahy filed {n-1}d subshell either in their ground state of Intheir

d-black elemimis which
stabile owidation siates. Thenrtone Zn, Cd & Hg - ane d-block elemends bt not tramsition elemenis.

GENERAL El ECTRONIC CONFIGURATION

s -] fe-

[ Cradst 38 §
Emﬂm“-lc“ < gt 30 - P =S

TRANSITION SERIES
B, —2n, S41=10
Y, —Cd, 941=10
La_ HI —Hg, G4+1=10
Ac, Ung . —Udb,. S+1=10
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Y o . N =Y N, . F 7 ; r o r r N P a
S8 B0 PEPCRO00PPIEOLOLOIIES 6D EO
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@ 04 X
¢y ( ATOMIC RADIUS B & OXIDATION STATE A
By gl deeries S > Ti > Vi Cr >Mn>Fe w 00 = Ni<Cu < Zn | | Tramsition elements exhibit variable oxidation state due '’

AV, to small emergy difference of nsand (n=1)d eecirons. v
( X T @ group 3d 1o &d seres increases but 4d and 5d series | | - 5Ll{+3}arﬂ1.’.rﬂ';] g ﬂ:;:w o X

k" i nearly same due bo poor shielding of { electron. ' ke . b "ﬁ'#
( X [ * 7 Common oxidation stata is +2 & +3 X

| 4 A In3d saries highest oxidation state i 47 (Mn) 1
( X A Ind-biock series highest oxidation sate is +8 X

X Smallest radius — N (Os. Ru) £
", eg:Ticdra Hif e A Inearbamd compound fhe so cxddation statis of X
o . metals is stablise by srergic effects. Y
FaTy | Melting point s block metals < d-blockmetals | || 7 Thea higher cxddation sales are meee stabl b e
£ X Aol 7 ;

W' Irv e o ncreasirg murmiber of unpained & mipt incneases e Lo by

v, and therefore m.p. ncrease upto Cr then decreases. o Highes owidation siates i oaides ase norally moes \

¥ stabile than fuorides due lo capability of oxugen ¥
" g SeeTieVer>MicFes>Co>M>Cu>2n {0 form muhtiple bonds. / .';.
M . stable fluoride in higher oxidation siafe of Mn Y

K 3 N ’ -
v, , . is MnF, while cnide is Mn O,

A e et by O = Mn show maxirmum number of coxidation state :

[ ¥ Ci> Hg 1+2 to +7) among 3d series. e
i nxCd > = Beyong Mn trihalide are not observe except vy
Py Melting polnt| . Ags Ay Idala based) FeX, (X = CU/Be/T) & CoF, .
.. = VO, v, VO, A
ik B B o=
LA - 73 metals < d-block metal. basic amphoteric acidic | §
Fal | Density : s-biock metaks < d-b | ~ MO M, MO
F ik N 3d series basic acidic v,
[ . . — - -2 Cul. does not exist x

e [Sc<T<V<C <Mn<Fe<CosNi<Cuszn] : | K )
i Y Deensity in a Group 3d < 4d <= 5d cu'z‘_"‘m"'_;lz Y
Metallic character : They are slid, hard, ductile, | | = E;;wm Cu” disproportinated into Cu & e
{ r mmu-alﬂmdn-! :wlmﬁ mﬂ :emﬁh:yl m-tl In p-block lower oxdation states of heavier /J

¥ ’ ' elemients are more stable while in d-block heavier Y

! elerment, higher ootidation state are more stablke., .
i i Elecirical conduct Cu>Au= Al
LA =g 0> > L eg. In V15 gp Mol +6) & W(-+6) are more stable

) [ than Cr{ +6) {
LA : —— ¥

' : ns of d-block elements 2) Y
.". -\_{_.' ._IJ__, N
Lt fa) Cu® + 4 — + A

Ot + b <3 ) CuSO, 5H,0 —"5s CuSO, H.O0 —2 . CuS0, 2
b 00, + KON — K50, + U, et "
i CN : .

X 2CulCN), —» 2CuCN + [Nk T 040450, + El[:z v
N CuCN + 3KCN — KCulCN),] A
..-“'/\'- Cu 1001, &m CI.II.OH} ‘ﬂ' Eh_'a! + NHlml — }‘h/HH;I- I_h w
| /{ ki B ELLS I : \C‘I T ':".

L, i W 4
f.f"\, Au—fim L HIAUCL ]+ NOCI+ HO (g NO; /NO; == [ Fe(H,0), NO* ]SO, W
.\__ P 1 Brossm ring compis ,?

A il AgNO,ls]— s Ag e NO, + =0 (h) AgBr + 2Na 5,0, —+ Na,[Ag(S,0,),] + NaBr R
{ ¥ 2 Phustugiphic b1

e 1 comples PV

X 0, ) —Ham o, +=0 L. A
i AgC0, Ag+CO, + 2" {i) Chemical volcano -l

..'\ 4 .'- .'-/.-\.-'!
:._,;\ v MNHLCrO, — N +4H.0+ Cr0, A :

N Ta

My Y,

f:. F }{\ h p :.'\ /
ok L
NS 83 r \ -"'T: %
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- Reactions of Cr,0,%:

» Reaction of M

n0 -

MnO, (Purple)

) e
Sﬂ?-l—-
H S

—r
e 50

i

504
INC) P

| —

iy =—

(5 e
C.HOH=—

[ e

S+500,°
e NI,
— L,
e CH -COOH
—

e [

L

Mn ™ {Purple colotr is decolourtse

Hl'bﬂ“ Stongliy A HI!D.'.

Basic

purple

sl

green
M0, /OH

— (],

mm——uz}ﬂ

Ammonal

Amatal

Mujian regia

Freezing
mixiure
Fehling
solution

Gian powier

Cirnmite

Uiobar pas

Cr, O, 10Orange)
S0 ——a 50
H St 5
Eﬂ, '._—".‘E{.L x
e P —TY
f———al,
s —" T
§0t—t 25480,
C HOH ———e CH, COOH
Syt
Ee o Fe
]
Crigreen)
Cr0)," e Cr 0,
xor = et
Cr,0;*/H (Orange)
H.O, H,0
(Blue)

Al pavder + NH,NO,
[used s an explosive]
NH N0, (8% + trind=
troncluene {20} [used
s an explosive]

Cane: HNO, + conc,
HCLLL - 3) [used as &
labarabory reagent]

A solution of Cus0, +

lime Jused to kill moulds

ane] fungi on plants]
Na 00, + CaS [impure

mm, abeained in
process|

Mal’l + dce Jused for
lowering temperature]
CuS0r,5H.0 + NaOH +
sodiam potassium tar-
tarate [used for detoct-
ing abdehydes]

H]q, + few drops of

L
KNO, [75%) 4 5 (12%)
+ chasooal | 13%) [used
as an explosive]
Mhica + rock + clay +
sand
CH, + 00 + H, [used as

Migrodim

Mutrw chalk

(Stablize in the presence of organic solvent such as
puridine etc.)

IMPORTANT REAGENTS AND MIXTURES

A solution of

Cus0 SH,O 1 MalH
4 sonbiiam etrate [used
fior detecting ke
fydes]

Alicabine KNn(), solu-
tion [used for detecting
ethylene and acetylene
hinkages]

MabbO0), + sodingia
potassium tanarate
Vepetable oil + lime
water [used for trem-
meml of burns]

An aqueocts suspershon
of MgtOH), [uwsed as a
antacud)

Rectified sparit
[&3-90%) + CH O
(10=15%) + pymiding +
acchine

[sed s a mlvent]
Cu,S + FeS
E:ﬂH:Pu‘i.I-‘- Cﬂm}h
[uased as a fertilizer]
Cai’N, + graphite
[ased as a ferilizer]
NHNO, + Ca0,

h

MnO,
{Brown PPT)

Casbogen 0, (9-93%) + 0O,

{ 5-10M%%) [mded fior an-
fhctal resparation)

Coal pgas H, (47%) + CH, (32%)
+ 00 (Th) + N, (4%)
+CH, (3%) + CH,
{2%) + OO, (1%) +
ather pases (4%) [used
1o produce reducing
atmosphere in metal-
lurgical operations]

Euchlanne Cl,+ i,

Fusion N, 00, + K00, [uvsed

mxiure 23 & lahorstory reapent]

Rectified C HOH (95.587%) +
wpirit H 04 13% ) [used as a
sollvent]
Super phos-  CafH,PO ), + CaS0,
phaate of Hme - Jused 28 a fertilizer]
Sublimated - Phiy = PhSO, = Zn0
white lead  Jused s 2 white paint]
Sorels Migd + Mgl [ised
CEiren a5 & substitute for tiles)
Sodalime WalkH + CarOH),
[used in decarbonylation
of carboxylic acids]
Soda bleach  Wa,0, + HCI [ussd for
bleaching of fabrics]

84




Clemmensen reduction

(Canmizram reackicn o

Dhels-Alder reacizon

Etard reaction

Friedel-Craft reaction
Gattermann-Knch reaction
Gattermann reaction
Humnsdhiecker reachon
Hefmann mustard il reaction

Hulfrmasin bromambde reactios
Hell-¥olhard-Zelinsky reaction

Haloform reaction

Kaolbe electrolytic reaction
Lehermann nitroso rescison
Mendis reaction

Meerwein-Ponndorf verley

Perkin condensation

Rosenmund reduction
Resmes-Tiemans reaction

Stephen reachon
Schutten-Baumuinn resction

Sandmeyer reaction

Sahaticr-Senderms reaction
Ullmann reaction

Wurtz ~Fitting reaction
Williammson symthesis

Named reactions in Organic chemistry

Starting Material

Aldehyis having a-hydeogen atom
srematic aldebvde
mrmatic ketoome

C,H,NNCI + phenol (or aniline)

{nidchyde, keiono or ester Contniming
o-hydoges slom) + (sfomatic alde-
bryde ar ketome)

addehyde or ketone

piary atits:

abdebyde not having a-hydrogen atom
a, B-unsatumated curbory] compound +
conpugated diene

asmatic primary aming

tolucne

CH, + RX {or RCOCT)

aryl halide

CH, + CO + HCI

CHNNCI

Ag salt of carboxylic acd + Hr,
primary aliphatic amine + CS,

acid] amide

carbonylic acid having -hydrogen
akom

CH,CHO, methyl ketane

CHOH

alkah metad salt of carbaxylic acid
secondary smine

alkyl or aryl cyanide

ketone

aromatic skdehyde + (CH,C0),0

acid chioride
pheno]

alkyl cyuide

(phenal or aniling or aleohal) +
C,H,000]

CHNNCE

ursaturated by dmocarbon
indnhenzene + Co

alkyl halide + aryl halide

alkyl halide + sodium alkexide o
wlium phenowide

Reaction Condition
cone, MalH
KON
180-200°C, PCL or PO, ar
50,01, ar K30,
NaOH (in case of phenod), HC1
(in case of aniling) NaOH

ZnfHg + conc HC|

CHCL, + Nal¥H
ag. KOH or ale. KOH

100°C

NaN(} jeane. HCL 0- C
oAU,

anhy, AICT,

Nalry ether

sy AL,

Cu powder + HCI

€O, 8e°C

HgCl,

Be/NaOH
Bic/red P

Na(HIX, or Nax
€0, 125°C, 47 atm, H*

clectrolyss
NaNO fHC1
Na/CH,0H

((CH,LCHOLAL + (CH,\CHOH
CH,CO0Na, HH,0

H,, PdBaS0,, 5, Bailing xylene
MiOH + CHCL or CCl,
il HCL

SaCLHC

NaDH

CuCVHO or CoBrHEBr or CulN/
ECN, heat

mney NUH,, 200-300°C

heat

Nafdry ether

heat

aldol & ketal
benzoin
Nesubstituied scctamide

Azo dye

unsaturated  aro-maiic
aldelyde of keloine

hydrocarban
carby Lamine
alechol & acid
eychic addition product

CH,NNET
benumaldehyde

alkeyl & acyl benrene

dipheny
aromatic abdefryde
halobenzene

alicyl or 2yl bromide
CH,CH-N=C=§
{roustard odl)

Ty amic
a-halogenated  carboxs
ylic acad

haboform:

allame, alkene & alioyne
RN-N=0

imary amine

sec. alcohol

o, [-unsatursicd aro-
il acid

aldehyde
salicylaldehyde or mali-
cybc acd

aldehyde

benpoyisted prodoct

&ggg i
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IMPORTANT FORMULAE OF REPLACEMENT OF GROLPS

o (¢ R L O

albaney allan=s
—(m—miwBm, Y CH—
alkanes dlanes
oy g KOHNOH

g Doy

T

—CHOH _controlled mudation e

" mild oy sgem
—CH,OH -=2= _COOH
1* slicohaly aaidy

5 CHOH St CaQ

17 gcehols ketomcy
muidation %

>00H —=>C=0

1® wlcabuly lichsnes

UL/ P SO0 HEY
—_—

—0H —

Acetylation

CgHsCOCl + HOCH,CH; ———

X NH
—H—le—X —COOH —» —CONH,
—CHO o —CHON —COONH, =2 —CONH,
* aleuhals.
aldctydes ) ! —C00),Ca =2 e —CO- 0r CHO
C=0— CHOH
:m _*:.lm —CaN === B ¥iir
! +azaies I amime
‘Hw -
:-{“I-IGHW"{H:"’C o § N Soduction R—NH-CH,
[N — carbomyl
& Ty * amme
0 emaihation —C0oH —NU: —— _NH:-
{H e nHrn 1* i
> =0 midation —OO0H = NOH —'—"—NH;
B e ey 1* mmne
gl Maidl, + HC UKD
PO . g —HH, —————t—OH
R L MaNih, + O N0, ?
__roop S oo, (—C00)Ca 3N ————p —N-N=0
o POLROL OO, e —N acud e alkalnc —COOH
e b

Aq.N20H

Benzoyl chloride  Ethyl alcohol

Wurtz FittigReaction

@4&}*:&3:;:;

rrsrrmmmsm

BTEI'm.Iﬂ!:IIIEDC

Wurtz Reaction

_”+__:'_CH3 '—n}—iﬂb
Methyl bromide

CgHsCOOCH,CH, + HCl

Ethyl benzoate

Toluens

r=—=—=—=1 Dryether
CH;—LBI + 2Na+ BrJ— CHy =——— CHy;—CH; + 2 NaBr
Methyl bromide Ethane
Wolff-Kishner Reduction
NH,NH, KOH, glyeol ”
.R—CH.= 0 -_-rH_D’ |R—CH = NNH:] m? R—CH3 +iNg
Aldehyde Hydrazone
cocH, 2R, ycH
CH, 3 mmx ChCHCH,
Acetone Propane

@—ccm,

Acetophenone

NH,NHyKOH, glycol
48534 K

@—cnlcm

Eihylbenzene
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5.

6.

7.

8.

9.

Wiliamsons Reaction
Ethyl indide Sod. ethoxide Diethyl ether

ONa OCH 1

* CH;I — @ + Nal
Methyl iodide

Sod, phenoxide Anisale

Stephen Reaction

SnCl, + 2HCl —— SnCl, + 2 [H]

CH,C=N+ 2 [H] + HCI ;)Tqa_z::;—} CH4CH = NH.HC]
Acelonirile Acetaldimine hydrochloride
{ Boiling H,0
CHyCH =0+ NH,CI
Acetaldehyde

Swarts Reaction

CHBr +AgF =5  CHF  + Aghr

Bromomethane Fluoromethane

2CH,CH,Cl + HgFy, —25 2CH,CH,F + Hg,C),
Chloroethane Fluorpethane

Schmidt Reaction

N;H

C,H,COOH ———— CgHs—NH, +C0,+N,
o +oone HaS0y i

Benzoicacid Aniline

Schotten Baumann Reaction

OH OCOCH;

+ CgHsoo0 —2H + HCl

Beneoy] chlonde
Phenol Phenyl benmoate

NH, © NHCOCgH;

+ G000 —H, + HCl

Benzoyl chlorde
Aniline Benzanilide

MadH
CH;CH,0H + CgHCOCl —— CH;CH,0COCH; + HCI
Ethyl abeohol  Benzoyl chloride Ethyl benzoate
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10. Sandmeyer’s Reaction

=NCI™ Cl
CuClHCI
—.-1* + Ny + CI7
Benzenediazonium chlonide Chlarobenzens
+
N=NCIT Br
CubirHBr -
N - H: + CI
Benzenediaranium chloride Bromobenzene
+
N=NCI™ CN
CuCNKCN = =
| + Ny + Cl
4 e =~
v Benzenadiazonium chloride Benzonitrile
11. Rosenmund Reaction
0
Il Pd.BuS0, 5 [
R—C—Cl + , ———— R-—C--H + HCl
- Boling xylene
Acid chloride Aldehvde
(9] 0
Il Pd.Bas0O 43 Il

CH —C—Cl+H, —— CH ,—C—H + HCl
2 Boiling xyviene
.-"L::!}'] chloride Acetaldehyde

12. Reimer-Tiemann Reaction
0OH

HCls CHIDHP;
_NaOH. 30K T ok
é “+ CHClY ————— -NaCL-ly0 d‘ @
Phenol
ONa OH
@cm _— @,mm
B —
a1
LMydrmupbenraldehyde
1 Salicyialdehye)

13.  Perkin Reaction

CellsCH = 0+ H,! ::chx CHycooNw 53k CyHCH = CHCO\
/ ——no

B:nmlur:h;.-dr: -0 CH,CO0~”"
Acetic anh}ﬂmlr
H,,0, Boil
—— CH.CH=CHCOOH + CH,COOH
(Hydratysis) d

Cinnamac scid
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14,

15.

16.

17.

18.

19.

20.

21.

22.

Liebermann’s nitroso Reaction

R,NH + H—N=0 — R;N—N=0 + H,0
2° amine Nitrous acid N-Nitrosodialkylamine
Mendius Reaction
N#CIHin‘H
Acetonilrile Ethylamine
Colbe-Schmitt Reaction
ONa OH OH
@ cooNs . @/c‘mu
4-7 atm H
400y ———b —
= 4K Hy0
Seul. phenonmde Sod. salicylate Sakieylic acid
1.'|ﬁr.'{lrprn\-|'un:r!|
Hunsdicker Reaction
CCly 350K
CHECHECQDAE + B e CHCH—Br + CO, + AgBr
Silver propionate ' Ethyl bromide

Hoffmann bromamide Reaction

CHyCONH, + Br, + 4NaOH — CH,NH, + 2 NaBr + Na,CO, + 2 H,0

Acetamide Methylamine

Hoffmann Ammonolysis

(N H;H:/_+\‘|1.QE MK

NH,

+
Ammania Alkyl halide is Mi;ﬁ{ — ELE_T‘_’H: + NH§ X~
Hell-Volhard Zelinsky Reaction

CH,C00H —2, CICH.C00H —iny L & 27, a,ccoon

: - Cl . -

4000 - CH,COOH —— Cl,CHCOOH —— Cl

Acetic acid Monochlero- Dichloro- Trichboro-
acetic acid acethc acid acetic acid

lodoform Reaction

EH_-‘CHEGH + 4 |2 + 6 MaOH — CH[; + HCOONa + 5Nal + 5 H,O
Ethanol losdnfinem
CHyCHOHCHy + 41, + 6 NaOH — CHlﬁ + CHyCOO0Na + 5 MNal + 5 H,0
2-Propanc] lestoform
'CH;CDCH} + 3 I; + 4NaOH — CHls + CHyCO0Na + 3 Nal + 3 H.O
Propanone lodnform )

Gattermann-Koch Reaction
CO + HCl — HCOC1
Fﬁﬂ'ﬂ}'] chloride {unsiable)

AICly+CuCl
CgHg + HCOC| —— CgHsCHO + HCI

Benzaldehyde
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23. Gattermann Reaction

+
@—NENGI'

Benzenediazonium chloride

+

e (O

Cu/HCl

Chlerobenzene

CwHBr
o O o

Benzenediazonium chloride Bromobenzene
24. Gabriel Phthalimide Reaction
CO co Co
S 2 P NCHACH,
cQ CO [‘D/
Phibalimside Pot. phitalimide N-Ethylphihalimide
ol @Ecmr{
— + CHyCH,NH,
(Fiydrodysiv) e, Eiylemine
Phthalie acid
25.  Fries rearrangement
OCOCH; OH
COCH4
Anhyd. AICl, CS5y
T Y
Phenyl acetate o-H}'dmr
COCH;
p-Hydroxy-
scetophenane
26. Friedel-CraftsAcylation
Anhyd. AICI
@ + CH;CDC' e Q_CQCHg‘FCH;CDDH
Acetyl chloride
Benzene Acctophenone
Anhyd, AIC
@ + (CH;C0R0 ~—> @—COCH3+CH3CDDH
Acefic anhydride
Benzene Acetophenonc
27. Friedel-Craft Reaction
CH,
Anhyd. AICI
@ +  CHyCl e + HCl
Methyl chlonde
Benzene Toluene
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28.  Fittig Reaction

chzwwm-@ D e, + 2 NaCl

Chlorobenzene { Fwvo malecules) Diphenyl or Biphenyl

29. Finkelstein Reaction

Acetone or methanol
CH;CH,—Br + Nal = » CH;CH,—I + NaBr
Bromoethane Iodocthane
30. Etard Reaction
. OCr{OH)CI
: ey 2
CH, H_ CHO
OCr{OH)Cl,
20r0,C1 Hy0"
CCly Hydrolysis
Toluene Brown complex Benzaldehyde
31. Esterification Reaction
O
ll'lr'|} —— Conc.H,50, Ml
R—C—OH + H—0—R" =——= R—C—OR’+H,0
Carboxylic acid Alcohol Ester
32. Diazotization Reaction
NaNQy + HCl —— HONO + NaCl
Mitrous acid
i
NH, N=NCI
2T3-2TH K
+ HONQ +HCl———* @ + 2 H50
Aniline Henzenediazonium chloride
(1* Aromanic amine)
33. Decarboxylation Reaction
€, E30K
CH,CH,COCONa + NaDH —— CHy—CH, + Na,CO,
Sod. propanosie Ethage -
COOH Cal), 630 K
@I + 2NaQH —— @ + NapyCOy + Hy0
Benzaic acid Berizene
34. Clemmensen Reduction
+Caonc, HCI
CH,COCH, + 4 [H] —m{’_ﬁ_, CH,CH,CH, + H,0
Acetons Propame
CHj CHyCH,
@/m + agan Mo @/ -
Acetophencas EthyTbenzene
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35. Coupling Reaction

* me-mak o
Q—Ih.:.m:r + Qn T QN— —@—nu HCT

Beagenedinrentam Phenal peHydronyarchenzens
[Brangr dyel
* 213—1’?1 K, H*
O+ Qo 228l Oy ]
(1 4-5)
Benzenedinroniam Aniline Diazoaminobenzens
chlorids

IO E varm,, Qn- @hlh

prAminoarohonzone

| Frdivw el
36. Claisen Schmidt Reaction
—— Dil. NaOH
Cﬁl-LCH- 0 + Hz CHCHO ——— CgH,CH =CHCHO + H,0
Benzaldehyde Acetaldehyde Cinnamaldehyde :
— " Dl MaDH
CHsCH = D-r Hg CHCOCHy —— C¢HCH = CHCOCH; + H,0
Bmuldebrdt Accione Benzalacetone
37. Claisen Condensation
? §
II [f = C; HyONa ll
CH,—C— OC,H +H_I—CH —c—nr_ ———+ CHy—C—CH,—C—0C,H,
Ezhsl Iw;m_ - Ethyl acetate Ettiyl aceinacetars 1-C2H5CIH
(A Prkese esoer)

38. Carbylamine Reaction

A
CH3CHyNH, + CHCl; + 3KOH — CH,CHNEC 4 3KCI + 3H,0

Ethylaming {irde, ) Etbyl imncymmide
or Bty carbylamine
NH; N[
+ CHCly + 3 KOH —2—= < 3KCI + 3H,0
ke
Aniline Phemyl isecvamide
or Pheayl cartylansie:
39. Cannizzaro Reaction
EI} 0
Il
2H—C—H + NaOH —— CH;—OH + H—C—ONa
Formaldehyde — (509) Methyl alcohol Sod. fonmate
2 CgHsCHO + NaOH ——  C HsCH,0H + C(H,COONa
Benzaldehyde (30%) Benzyl alcahol Sod. benzoare
CH;G—@—CHD + HCHO + NaOH — cw:r—@—cuzmi + HCOOMa
Formaldehyds {304} Sod, feemate
p-Methenyhenraldchyde P-Medhonybenzy] sheohal

40. Benzoin Condensation
ﬂH 0

IO == ollo

H Benzaldehyds (2 mobecules)
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41,

42,

43,

44,

Balz-SchiemannReaction
N= =NBF,
' NOHBE,
P usx Baran
Aniline Berzenediazoniam Fluorohenzene rifluende
tetrafluorchomate

Cross Aldol Condensation

U I[I? 0

Dil. NaOH
CH —C—H + H—C~H —— HO—CH ,—CH, —E"—-H

Acetaldebyde Formaldehyde B-Hydeonypropionaldehyde
Ci, g I oanow ll? 1y
—(-CH, + B—C—H —— CH, 2o—cH ,—CH,—OH
o Py Hydonyhun e
Aldol Condensation
OH

N [\

s 3
CH,CHO 2y Ch—C—CH—CHO
i U |

H
Ethanal or Acetaldehyde 3-Hydroxybutanal
(two mafecules) (Aldof)

Benzoylation Reaction

NaOH
CHLOC! + CH,CH,NH, ——— C,H,CONHCHCH, + HCI

Benzoyl chlonde ~ Ethylamine N-Ethylbenzamide

kKX
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Mathematics




Important FORMULAE

Basic Algebra (Upto class IX & X)

1 (a + b)? = a? + 2ab + b? 2 | (a—b)?> =a?—2ab + b?
3 (a+b)(a—b) = a? — b? 4 | (a+b)?+ (a—b)?=2(a®?+ b?)
5 (a +b)?> — (a— b)? = 4ab 6| a’+b%*=(a+b)?—2ab=(a—b)?>+2ab
7 1\2 1 8 1\2 1
) 2. b e S R
(x+x) =x +x2+2 (x x) =x +x2 2
o (x+a)(x+b)=x*>+(a+b)x+ab
10 (x—a)(x+b)=x%>—(a—b)x —ab
11 (x+a)(x—b)=x%>+(a—b)x —ab
12 (x—a)(x—b) =x?>—(a+ b)x +ab
13 (a +b)2 =a®+3ab(a+b) + b2 =a®+ 3a?b + 3ab? + b3
14 (a —b)® =a®—3ab(a—b) — b® =a® —3a?b + 3ab? — b3
15 (a+b)>+ (a—b)>=2a®+ 6ab?
16 (a+b)>— (a—b)>=2b3+ 6a®b
17 a® + b3 = (a+ b)(a® — ab + b?) = (a + b)® — 3ab(a + b)
18 a® —b3% =(a—b)(a?+ ab+b?) =(a—b)?+3ab(a—Db)
19 1,3 1 1
_ — 43 _ —
(x+x)3—x +x3+3(x+x)
20 1 , 1 1
A
21 1 1 1 1 1
3, - _ ) _ 2\ N2z 4 — _
s x+x)3 3(x+x)—(x+x)(x t i 1)
22 , 1 1 1y Ny, 1
o= ) +3(-g)= (-3 mr)
23 (@a+b+c)?=a?+b?+c?+2ab+ 2bc + 2ca
28 (@a+b+c)¥=a®+b3+c3+3(a+b)b+c)(c+a)
=a3+ b3+ 2+ 3ab(a+ b) + 3bc(b + ¢) + 3calc + a) + 6abc
29 a®+b3+c®—3abc=(a+b+c)a?+b?>+c?—ab—bc— ca)
1
=E(a+b+c)[(a—b)2+(b—c)2+(C—a)z]
30 [a*—b*= (a2+ b?)(a+b)(a —h) | |
Indices and Logarithms
1 am™ xat =agmtn 2 am” +a* =qgm ™"
3 (@™ = g™ 4 a®=1
5 a™ x b™ = (a x )™ 6 |a"=b"=(a+bh)"
K a—m=i 8 "a = a'lm
am
9 log,m+log,n =log,(m xn) 10 | log,m —log,n =log,(m +n)
— n
11 loge b™ = nlogg b 12 logam b™ = —loga b
13 logea =1 14 1 logea
logba_logab_logeb

Remainder Theorem - If p(x) is any polynomial of degree greater than or equal
to 1 and p(x) is divided by the linear polynomial x — a, then the remainder is
p(a).

Factor Theorem- (x — a)is a factor of the polynomialp(x), if p(a) = 0. Also, if

x — a is a factor of p(x), then p(a) = 0.
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Quadratic Formula x =
—b+Vb2—-4ac
2a

0 and D(= b? — 4ac) is the Discriminant.
(@) If D < 0, then the roots are non-real.
(b) If D = 0, then the roots are real and equal.
(c) If D > 0, then the roots are real and unequal.

,where the values of x are the roots of the quadratic equation ax? + bx + ¢ =

If the roots of the quadratic equation ax? + bx + ¢ = 0 are a and B, then

b Coefficient of x

b__ Coofficientof x .\ 4
a Coefficient of x
¢ _ Constant term
a

Coefficient of x2

sumof roots= a+f =—

product of roots = a.f =

Arithmetic Progression

The nth term of an AP (from beginning) = a+(n-1)d
Where first term isa and common differenceis d.
The nth term of an AP (from end) = [ -(n-1)d
Where last term island common differenceis d.

The sum S, of n terms of an A.P. with first term a and common difference d is given by
S, = %[Za +(n—-1d]orS, = %[a + 1], where [ =lastterm = a+ (n— 1)d

If the sum S, of n terms of a sequence is given, then n term a,, of the sequence can be

determined by using the formula a,=S,-S,_;

Mensuration (2-D plane figures & 3-D Solids)(Upto class IX & X)

1 Perimeter of Polygon = Sum of all the sides of the polygon
2 Perimeter of Rectangle = 2(length + breadth) = 2(l + b)
3 Perimeter of Square = 4 X side = 4a
4 Circumference of a Circle = C = 2nr, wherer is the radius of the circle
5 Perimeter of a Semicircle = nr + 2r = (w + 2)r
6 Area of Circle = nr?
7 . 1
Area of a Semicircle = Em”z
8 L th Arc = o X 2
ength of an TC=3c0e nr
o Area of a Sector = b X r?
~ 360°
10 Heron's Formula — Area of a Scalene Triangle = \/s(s —a)(s — b)(s — ¢),
1
where s is the semi — perimeter of the Scalene Triangle, s = 3 (a+b+o0)
and a, b&c are the sides of the Scalene Triangle.
11 1 1
Area of a Right Angled Triangle = 5 X base X heht = 5 XbXxXh
12

1 by?
Area of an Isosceles Triangle = 3 xXb x [a%— (E)

Where ‘b’ is the base and ‘@’ is one of the equal sides of the Isosceles Triangle
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13 , _ 3 V3

Area of an Equilateral Triangle = 7 X side X side = Taz
14 1 .

Area of Rhombus = 5 X dy X d,,where d,&d, are the diagonals of the Rhombus
15 Area of Parallelogram = base X height = b X h
16 Area of Rectangle = Length X breadth =1X b
17 Area of Square = side X side = a?
18 . . 1 ] ] 1

Area of Trapezium or Trapezoid = 5 X sum of parallel sides X height = 5 X(a+b)xh
19 Euler's Formula F+V —E =2, where 'F’ stands for number of faces,

‘V’ stands for number of vertices and 'E'stands for number of edges
20 Area of four walls of a recangular box or Curved Surace Area of Cuboid = 2(1+ b) X h
21 Total Surface Area of a Cuboid = 2 (Ib + bh + hl)
22 Volume of a Cuboid =1 X b X h
23 Curved or Lateral Surface Area of a Cube = 4 [?
24 Total Surface Area of a Cube = 6 12
25 Volume of a Cube = 13
26 Curved or Lateral Surface Area of a Cylinder = 2nrh
27 Total Surface Area of a Cylinder = 2nr(r + h)
28 Volume of a Cylinder = nr?h
29 Curved or Lateral Surface Area of a Cone = nirl,where l(= VrZ+ h2) is slant height of cone
30 Total Surface Area of Cone = nr(r + 1)
1
31 Volume of a Cone = §T[T2h
32 Curved or Lateral Surface Area of a Prism = height X Perimeter of the base = h X P
33 Total Surface Area of a Prism = 2 X Area of the base + h X Perimeter of the base = 2A + hP
34 Volume of a Prism = Area of base X height = Ah
35 Curved or Lateral Surface Area of a Pyriamid
1

= Number of sides at the base X Area of a triangle = n X 5 XbXh

36 TotalSurfaceAreaofaPyramid
1

= Area of base + Combined Area of the lateral faces = A+ n X 5 XbXh
37 . 1 . 1

Volume of a Pyramid = 3 X Area of Base X height = 3 XAXh
38 Surface Area of a Sphere = 4nr?
39 Volume of a Sphere = gnr3
40 Surface Area of a Hemisphere = 3mr?

2

41 Volume of a Hemisphere = §7TT3
42 TotalSurfaceAreaofaHollowCylinder = 2nirh + 2nRh + 2 (R? — r2)
43 Volume of a Hollow Cylinder = n(R? —r?)h
44 Curved Surface Area of Frustum of a Cone or Truncated Cone = nl(r, + 1),

where l (: h? + (r, — rz)z) is slant height of the frustum
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45 Total Surface Area of Frustum of a Cone or Truncated Cone
=1l(ry + 1) + (2 +1,%)
46 Volume of Frustum of a Cone or Truncated Cone
1
= §nh(r12 + 1,2 + 1yr,), where his vertical height of the frustum,
r1&r, are radii of the two bases (ends)of the frustm
Trigonometry (Level upto class X)
sine _ Perpendicular COSCCe - HypoteTluse
Hypotenuse Perpendicular =
=
cosQ = —2%¢ sech = [Iypotenuse = Hypotenuse
Hypotenuse Base E_
tand = Perpendicular cot8 = Bas'e E;
Base Perpendicular = Base
sin@ = cosecl = —
cosec sin@
1 1 1
cosb = — sech = — tanb = —
sec cos ot0
T .
ta 050 in®
sin20 + cos20 =1 1 + tan?0 = sec20 1 + cot26 = cosec?6
Or Or Or
sin%0 = 1 - cos?0 tan20 = sec?0 - 1 cot20 = cosec?0 - 1
Or Or Or

€0s20 = 1 - sin?0

sec20 —tan20 = 1
Or

1

cosec?0 — cot?0 = 1
Or

1

Sech - tand = ——— cosec - cot = —————
0° 30° 45° 60° 90°
sin 0 1/2 1/32 V3/2 !
cos 1 V3/2 1/42 1/2 s
tan 0 1/43 1 V3 >
COSEC 0 2 V2 2/33 !
sec 1 2/~3 \2 2 ®
cot o0 V3 1 1/43 0

T Ratios of Complementary angles

sin(90°-6)=cosb

cosec(90°-6)=secO

cos(90°-6)=sin6

sec(90°-6)=cosech

tan(90°-6)=cotd

cot(90°-6)=tan6
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Coordinate Geometry (Level upto class X)

The Distance Formula — The Distance between the points P(xq,y1) & Q(x5,V,)
=PQ :\/(xz —x1)? + (2 —y1)?

The Section Formula - The coordinates of point P(x,y),which divides the
line segment

joining the points A(x,,y,) and B(x,,y,), in the ratio m,: m, are
MiXy; — MyX1 MY, — MY,

), internally and ( , ), externally.
m; — m, m; —m;

(mlxz +myxy myy; +myy,
m +m, ' m;+m,

The Mid point Formula — The coordinates of the midpoint P of the

X1+X +

A(xy,y1) and B(x,,y,) are (%'3’12372)_
X1+X,+X + +

Centroid ofa A ABC = ( EL=2 3,y1 Y2 y3)

where A(xl,yl) B(x3,v5) and C(x3,y3) are the vertices of the A ABC.

1
Areaof a AABC = Z[x1(y2 = ¥3) +22(ys —y1) + x3(y1 = ¥2)],
where A(xy,v,),B(x,,v,) and C(x3,v3) are the vertices of the A ABC

Statistics (Level upto class X)

Sum of all the observations
Total number of observations

Mean (for ungrouped data) =

Mean(for grouped data — The Direct Method)
_Xfixi
A

,Where x; are the class marks

Mean (for grouped data - The Assumed Mean Method)

x=A+ sz‘ L where A is the assumed mean, d; is the deviation from the class mark nd
di = Xij — A
Mean (for grouped data - The Step Deviation Method)
_ X fiwg . ) ) Xi—a
X =a+ o h,where h is class size of each class interval and u; = h
i
Median (for ungrouped data & O0dd number of observations)
N + 1,
= ( > ) observation,where N is the total number of observations
Median (for ungrouped data & Even number of observations)
NA R th
= Mean of (E) & (5 + 1) observations

7
f

where lis lower limit of median class, N is total number of observations,
cf is cumulative frequency of class preceding the median class, f is frequency of median
class, his class size (assuming class size to be equal)

Median(for grouped data) = | + X h,

Mode(for ungrouped data) = The observation which occurs most number of times

fi—fo ) x h,
2fi=fo— 1
where lis lower limit of the modal class, h is size of the class interval
(assuming all class sizes to be equal), f, is frequency of the modal class
fo is frequency of the class preceding the modal class, f, is frequency of the class succeeding the modal class.

Mode(for grouped data) =1 + (
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Algebra ( Level Class Xl & XIll)

Set Theory

For any three sets A, B & C and Universal set & (or) U, we have
AX(BUC)= (AXxB)uAx0C) AX(BNC)= (AxB)YN(AXC)
AX(B—C)= (AxXxB)—(AxC0C) AXB=BXxXA< A=B
MAxB)N(BxA) = (AnNB)x(BNA) AXB=AXC=B=C
Some Important Laws ( on Sets)

Idempotent laws AUA=Aand AnA=A

Identity laws AUp =AandAN&=A

Dominance laws AUué =&andAnN ¢ =¢

Complementary laws AUA =& andANnA = ¢

Commutative laws AUB =BUAand ANB =BnNA

Associative laws (AUB)UC =AU BUC)and(ANnB)NC=An(BNC)

Distributivelaws AU (B NC)=(LAUB)Nn(AUCO0C)
and ANBUC)=UAUNBYUMANCDC)

De’ Morgan’slaws (AUB) =A' NnB'and (ANnB) =A"UB’

n(AUB)= n(A)+n(B)- n(4 N B)

n(AUBUC)= n(A)+n(B)+n(C) -n(ANnB)-n(BNC) —n(CNnA)+n (ANBNC)

Permutations - Combinations & Binomial Theorem

If n is a natural number and r is a non-negative integer such that O < r < n, then

!
o n nCr X I"!:nPr
(n—nr)'r!

n n n n n+l1
Cc,.="C,_, c,+"c,_=""cC,

nc, =£.n_1Cr,1 _n (n—l)n—2Cr72 _ _n, (n—l)>< (n—Z)X « n—(;—l)
r

x (r‘—l)' ....... , (r—l) (r—2)

an=nCy —X=y Qr Xty=n

If nis an even natural number, then the greatest among

"Co,"C1,"C2 50, Cpy g ”Cﬁ
2
If nis an odd natural number, then the greatest among
"Coy,"Cy,"Cy,...., C, s nCL_l o nCL“
2 2

The number of ways of selecting r items or objects from a group of n
distinct items or objects is
n!
—:”Cr
(n—r)r!

Binomial Theorem: - If x and a are real numbers, then for all n € N, we have

(x+ a)n:nCoxnaO+nC1xn_lal+nC2xn_2a2 oA Cp T Ta" +nCn_1x1an_l+nCnann

n
ie., (x+a)'=>"C,x""a"
r=0
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Sequence & Series ( AP & GP)

The nth term of an AP (from beginning) = a+(n-1)d
Where first term is a and common difference is d.
The nth term of an AP (from end) = [ -(n-1)d
Where last term isl and common difference is d.

The sum Sn of n terms of an A.P. with first term a and common difference d is given by
S, = S[Za + (n—1)d]ors, = %[a + 1], where l = lastterm= a+ (n— 1)d

If the sum S, of n terms of a sequence is given, then n™ term a,, of the sequence can be

determined by using the formula a,=S8, -5,

If n numbers Ai, Ay, ....., A, are inserted between two given numbers a and b such that

a,ALA,,...... ,A, ,bis an arithmetic progression, then A;, A,,..... ,A,, are known as
b—a
n+1°

narithmetic means between a and b and the common difference of the A. P. is d =

a+b

+b
Also, Al + Ay + ... +A,= n(a > j where Arithmetic Mean of a and b is

Three numbers a, b, c are in A. P. iff (if and only if) 2b=a+c.

The n™ term of a Geometric Progression with first term a and common ratio r is given by

_ n—1
a, =ar

If the sum of n terms of a G. P. with first term a and common ratio is given by
rm—1

S"Za(r—l) forr>1
1 —r"

Sn=a(?) forr<1

S,=n,ifr=1

Also, s, = a-lr oy S = Ir—a \vhere l is the last term.
1-r " or—1

Let a and b be two given numbers. If n numbers G;,G5,Gs.,..... ,G,, are inserted
between a and b such that the sequence a,G,,G,,....,G,,,b
is a G. P., then the numbers G;,G,,Gs.,..... G

, are known as n geometric means

1

between a and b. The common ratio of the G.P. is given by , _ (éjﬁand G1 G,Gs G =
~ ) andGiGiGs ... n=

G" where G is the single
Geometric Mean of a and b given by ab.

If A and G are respectively Arithmetic and Geometric Means between two positive
numbers a and b, then
@) A >G.
(ii) The quadratic equation having a and b as its roots is
x® —2Ax+G? =0.
(i) a:b= (A+JA2 —Gz):(A—\/Az —Gz).

If AM and GM between two numbers are in the ratio m : n, then the numbers are in the

ratio m+\/m2 —n? :m—\/m2 —n? .

Three numbers a, b, c are in G. P. iff (if and only if) b2 =ac.

n
S k=1+2+3+.... +n=M=Zn
k=1 2
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n
> k2=12+22432 4. . +n2=w=2n2
k=1
n 2
Zk3:13+23+33+ ........... +n3:[n(nT+l)|} =>n3
k=1
2
Zn:k4—14+24+34+ ........... +n4:n(n+1X2n+312()3n +3n_1) =>n?
k=1

Statistics ( Level Class Xl)

Mean deviation is the arithmetic mean of the absolute values of deviations about some

point (mean or median or mode).
(1) For individual observation, we have

n
1

wp= 1Y
n.

i=1

where a = mean, median, mode
L X, —a
Also, M.D.=a+h iZ|M| , where U; = !
N L h
i=1

(i) For a discrete frequency distribution, we have

n
1 _ .
M.D.= 5 Zfi|xi — a| , a = mean, median, mode
i=1

n

1 xXi—a

M.D.=a+h Ezfiui , where u; = P
i=1

Variance is the arithmetic mean of the squares of deviations about meanx
(1) For individual observations, we have

1 =\
Variance = oy Z(xl- — X)

i=1

n n
2
AISO, Var (X) = % E xl' - %le
i=1 ]

i 2 [1w x;—a
— 2 — | = 5 = —
Var (X) = h ;Zui nZul , where U; Y
i=1 i=1
(ii) For a discrete frequency distribution, we have

Var (X) = %Zﬁ:fl(xl = Y)Z

1< 2 18
i=1 i=1

n

1
= vVar 00 = k2|3 fu,” —

i=1

n
Zfi”i
i=1

==

The coefficient of variation = C. V. = =— x 100

X
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Coordinate Geometry (Level Class XI)

TheDistanceFormula — TheDistancebetweenthepointsP(x;,y,)&Q(x,, v,)

:PQ:\/(xz_x1)2+(}’2_3’1)2

The Section Formula - The coordinates of point P(x,y), which divides the

line segment oining the points A(xy,y,) and B(x,,y,), in the ratio m,;: m, are

(mlxz +myxy myy, + myy,

MyXy — MyXy MyYy, — mz)’1)
m+m, ' m;+m, ’

), internally and ( ,
m; — my m; - m,

externally.

The Mid point Formula — The coordinates of the midpoint P of the

X1+Xp B’1+J72)

A(xy,y1) and B(x,,y,) are ( S

X1+Xp+x +y,+
Centroid ofa A ABC = ( L 22 3’y1 3;2 y3)

where A(xy,y,), B(x3,v,) and C(x3,y3) are the vertices of the A ABC.

1
Areaof a AABC = 3 [x1 (2 — y3) + x2(y3 —y1) + x3(y1 — y2)),

where A(xy,y,), B(x2,v,) and C(x3,y3) are the vertices of the A ABC.

The SI AB =m == tan§ = ¢ I
e Slope of ane =m == tanf = — PR

_ Diference of Ordinates _ y, —y,;

" Difference of abscissae x, — x;’ A
0

Kun

Where (x,y,) and (x,,y, ) are the two on line AB. '{

An acute angle 6 between the lines having slopes m; and m, is given by

mpi—m
—2-| where 1+ m;m, # 0.

tan 6= |

The distance between two points P(x;,y;) and Q(x,,y,) is given by PQ =
VO —x)% + (v, — y1)?

ie. PQ = \/(Differenceofabscissae)? + (Dif ferenceofordinates)?

The distance of a point P(x,y) from the origin O (0, 0) is given by OP = /x2 + yZ2.
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9 | The area of the triangle, the coordinates of whose vertices are A(xq,y1),
B(x,,y,)and C(x3,y3), is the absolute value of
1 ¥ 1
s —ya) + 03—y + x5O —y)l or Slx2 y2 1
x3 y3 1
10 xy y1 1
If the points (x4, y,), (x5, ¥2)and(x3, y;) are collinear, then |x; Yy, 1|=0
x3 y3 1
11 | The coordinates of the mid-point of the line segment joining (x4, y;) and (x3, y,)
(x1+ X2 Yit Y2)
are(——,—=).
2 2
12 | The coordinates of the centroid of the triangle whose vertices are
X1+ X+ X3 Y1+ Yoty
(x1, 1), (x2, ¥2)and(x3, y3) are( . 32 >, = 32 3)-
13 | The equation of a line with slope m and making an intercept c on y-axis is y = mx + c.
14 | The equation of the line which passes through the point (x;, y;) and has slope m is
y—yi=mx— x)
15 | The equation of the line which passes through the point (x;,y;) and (x,,y,) is
_Y2—W
YT V1=, T, T %)
16 | The equation of the line making intercepts a and b on x and y-axis respectively is % +
%=1. (Intercept Form)
If perpendicular to the line drawn from origin makes an angle a with x-axis and the
length of perpendicular is p then equation of the line is
xcosa+ysina =p (Normal form)
17 | General Equation of Circle -> (x — h)? + (y — k)? =12
Where (h, k) is the centre of the circle and r is radius of the circle.
18 | Standard Equation of circle — x2+ y2 4+ 2gx+2fy+c=0
Where (—g, —f) is the centre of the circle and r (z Vg?+f?— C) is the radius of the
circle.
19 | If (a, B) is the focus and ax + by + ¢ = 0 is the equation of the directrix of a parabola,

2
then its equation is (x — a)? + (y — B)? = %
a

ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0 satisfying the conditions abc + 2fgh —
af? — bg?— ch? #0and h? —ab = 0.

. This equation is of the form
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20 | Following are four standard forms of parabola:
y2 =4ax | y? x2=4ay | x2
= —4ax = —4ay
Coordinates of vertex (0,0) (0,0) (0,0) (0,0)
Coordinates of focus (a,0) (—=a,0) (0, a) 0,—a)
Equation of the xX=—-a x=a y= —a y=a
directrix
Equation of the axis y=0 y=0 x=0 x=0
Length of the Latus - 4a 4a 4a 4a
rectum
Focal distance of a la + x| la — x| la + y| la — vl
point P (x, y)
21 | If Sis the focus and ZZ’ is the directrix and P is any point on the ellipse such that M is
the foot of perpendicular from P on ZZ’ then SP = e . PM
The equation ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0 represents an ellipse, if
A= abc+ 2fgh—af? — bg? — ch? # 0 and h? < ab.
22 | The equation of the ellipse whose axes are parallel to the coordinate axes and
2 2
whose centre is at the origin, is z—z + 3;—2 = 1 with the following properties
x2 y2 x2 yZ
F+b_2=1’a>b ?+ﬁ=1.a<b
Coordinates of the centre (0, 0) 0, 0)
Coordinates of the vertices (a,0) and (- a,0) (0,b) and (0, — b)
Coordinates of foci (ae, 0) and (- ae, 0) (0, be) and (0, — be)
Length of the major axis 2a 2b
Length of the minor axis 2b 2a
Equation of the major axis y=0 x =
Equation of the minor axis x=0 y=0
Equations of the directices x = gand x = — g y = g andy= — 2
Eccentricity b2 a2
e = 1— ? e = 1 ﬁ
Length of the latus-rectum 2b? 2a?
a b
Focal distances of a point (x, y) la + e x| |b +ey|
23 | If the centre of the elipse is at the point (h, k)and the directions of the axes

are parallel to the coordinate axes, then its equation is

(x—h)?
az

The equation of the hyperbola having its centre at the origin and axes along

2 2
the coordinate axes is Z—Z - Z—Z = 1 with the following properties:
Hyperbola Conjugate hyperbola
x2 yZ x2 y2
@z ! "yt

AT}
L o= _
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Coordinates of the 0, 0) 0, 0)
centre
Coordinates of the (a,0) and (- a,0) (0,b) and (0, — b)
vertices
Coordinates of foci (+ ae, 0) (0, + be)
Length of the 2a 2b
transverse axis
Length of the 2b 2a
conjugate axis
Equation of the y=0 x=0
transverse axis
Equation of the x=0 y=0
conjugate axis
Equatiols of the e N b
direectices 2 e
Eccentricity 2
b? e= |1+ L
e = 1+ o b2
a
2 _ p20p2 _
or b2 = a?(e? — 1) ora b<(e 1)
Length of the latus- 2b? 2a?
rectum a b
24 | If the centre of the hyperbola is at the point (h, k)and the directions of the
—h)2 —1)2
axes are parallel to the coordinate axes, then its equation is (xa—:l)— &7 bf X =1
25 | Distance between two points P(xq,V;,2;) and Q (x5, V,, z,) is
d =0z =22+ (2 — y1)? + (22 — 2,)?
26 | Section Formula: If R divides PQ in the ratio m:n, then
R _ mQy xnk R _ mQ +np R _ mQ, xnk,
*7 m4+n Y7 m+n 77 m4n
Note:- “+” sign for internal division & “-” sign for external division.

Trigonometry and Inverse Trigonometry ( Level Class X-XI-XII)

o Perpendicular Hypotenuse
sind = = cosecH = 31177
Hypotenuse Perpendicular -
)
cosO = EENE O R secH = Hypotenusel 3 Hypotenuse
Hypotenuse Base El=_
=
Perpendicular Base =
tan® = = cotb = —_—— =
Base Perpendicular =
0 1 1
sin® = cosecO = —
cosecO sin®
1 1
cosO = secO = tan® = —
secO cosO cot®
1 sin® cosO
cotO = tanf = — cotf = ——
tan® cosB sin®
sin20 + cos?20 =1 1 + tan?0 = sec20 1 + cot?0 = cosec20
Or Or Or
sin20 = 1 — cos20 tan20 = sec26 — 1 cot20 = cosec20 — 1
Or Or Or
cos?20 = 1 — sin20 sec20 — tan20 = 1 cosec20 — cot206 = 1
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Secb — tan6 =

Or

secO + tan®

1

cosecO — cotb =

Or
1

cosecH + cotO

0° 30° 45° 60° 90°
sin o) 1/2 1/42 \N3/2 1
cos 1 N3/2 1/42 1/2 o)
tan 0 1/~N3 1 N3 00
cosec o0 2 V2 2/~3 1
sec 1 2 /3 N2 2 o0
cot 0 \3 1 1/43 o)
T Ratios of Complementary angles

sin(90°-0)=cos6 cosec(90°-6)=secHb

cos(90°-0)=sinO sec(90°-0)=cosecO

tan(90°-6)=cot6 cot(90°-6)=tan6

M0 MO0
sin(20+0)j=+cosil | sin|360+l}=+sini sin|1B0-0)=+sinil | sin(20-)j=+cost
cos(S90+i)=-sinl | cos(360+H)=+casil cos1B0-i)=-cosll | cos{@0-i1)=+sini
tan(20+()=-cotil | tan(3G0+0)=+tanl tan[180-)=-tani | tan(B0-ij=+cotil
180 € > 0/360 180 € > 0/360

sin(1B0+i)=-sini
cos|180+i)=-cosil

sin(270+0)=-cosd
cos{2T0+i)=+sinll

tan|1B0+i)=+tani

I’tnﬂli TO+i)=-coti

gin2T0-0)j=-cost
cos|2T0-0)=-sinl
tan(27T0-H)=+coth

sin|360-0)=-sini
cos|360-0)=+cosil
tan(360-0)=-tani

N

V

2}71:: 270
sin(—0) = — sin®b cos(—8) = cos6
tan(—6) = — tan® cosec(—0) = — cosecH
sec(—0) = secO cot(—8) = — cotO

Sin(A + B)= sinAcosB + cosAsinB

Sin(A — B)= sinAcosB -cosAsinB

cos(A + B)= cosAcosB — sinAsinB

cos(A — B)= cosAcosB + sinAsinB

tanA + tanB

+ o e—
tan(A B) 1—tanAtanB

tan A— tan B

2t (A N B) - l1+tanAtanB

Sin(A + B) + sin(A — B) = 2sinAcosB

Sin(A + B) — sin(A — B) = 2cosAsinB

cos(A + B) + cos(A — B) =2cosAcosB

cos(A — B) — cos(A + B) = 2sinAsinB

sin(A + B)sin(A — B) = sin2A — sin2?B

cos(A + B)cos(A — B) = cos?A — sin2B

sinC + sinD = 2sin(C%D)cos(C%D)

sinC — sinD = 2cos(C+TD)sin(C%D)

cosC + cosD = QCOS(C*'TD)COS(C%D)

cosC — cosD = QSin(C%D)sin(DZ;C)

2tan®

sin26 = 2sinBcos® = ———
1+tan?0

cos20 = cos20 — sin20 = 2co0s20 — 1




1-tan?0
= 1-2sin20 =———
1+ tan?0
2tanb i = : _ i3
tan20 = sin30 = 3sinb — 4sins%0
1 - tan?0
c0s30 = 4co0s30 — 3cosO 3tanb—-tan30
tan30 = ——m
1-3 tan?0
1 + cos26 = 2cos20 1 — cos26 = 2sinZ0
OR OR
1+co0s20 . 1— cos20
cosO = sin = [——
2 \} 2
. V5-1 V5+1
sinl8&° = 2 cos36° = "

sin(A + B + C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC — sinAsinBsinC

cos(A + B + C) = cosAcosBcosC — cosAsinBsinC — sinAcosBsinC — sinAsinBcosC

tanA4 +tanB + tanC — tanAtanBtanC
1 —tanAtanB — tanBtanC — tanCtanA

tan(A + B + C) =

The relation between three systems of measurement of an angle is LD e

Where the three systems of measuring angles are:

i) Sexagesimalsystem, in which we have
1right angle = 90 degrees, (= 90°), 1° = 60 minutes(= 60),1' = 60 seconds (= 60"")
ii) Centesimal system, in which we have

1 right angle =100 grades, 1grade =100 minutes, 1 minute = 100 seconds

iif)  Circular system, in which the unit of measurement is radian. One radian is
the measure of an angle subtended at the centre of a circle by an arc of
length equal to the radius of the circle.IT radians = 180°

Trigonometric Equations and their General Solutions

Trigonometric Equations

General solutions

sin® = 0 0 = nmt
cosO =0 0 = (2n+1)m/2
tan® = 0 0 = nmt

sinb = sina

0 = nii+(-1)"a

cosO = cosa

O0=2nmnta

tan6 = tana 0 = nni+a
sinZ0 = sinZa O=nmita
Cc0s20 = cos2a O=nmnta
tan20 = tanZa O=nnta
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Solutions of Triangle Formulas

In a AABC
e a, b, and c are the lengths of the sides of the triangle (opposite to angles A,B,C respectively)
e A, B, and C are the angles of the triangle.
e R is the radius of the circumcircle of the triangle.

Sine Rule or Sine Law a/sin A = b/sin B = c/sin C=2R

. . b
Where circumradius of AABC R = %
Sir S winB S 205
a v ] = abc
a 5] C abc : a+b+c
- 2! - - - h Fa Y f T I ds=—————_
T Sl ome das YWhwre TLATER SLanEe R R 2

Cosine Formula: In any triangle ABC,

(i) cos A = (b2+c2-a?)/2bc (ii) cos B = (c2+az-b?)/2ca (iii) cos C = (az+b2-c?)/2ab

Projection Formula: In any triangle ABC,

(i)a=bcos C+ccos B(ii)b=ccos A+ acos C(iii)c=acos B+bcos A

Napier’s Analogy- Tangent rule:

In any trangle ABC, with sides a = BC. b = 1A and ¢ = BA, then prove that

B-C_b-c A

(i) tan— bty
. o= A == a =
(1) tan== w = ——tot=
Ciii ) tanA:B- :_Er:r:-t“E1
- + -

In ABBC, FA=- B+ C=n

{a) sinjB<Cl=sin[z—A)=51nA

(B) cosiC+A)=cos(m-Bl==cosB

{c) ‘.iII'IA |-:!'=:.| E—Ei=|:|:|!.E
2 21 2
B+ T A A
d)] tosi——— =cos) ——— | =s5In—
() 2 | - | 2
b )
Sine rule: In, _—a— == _-_-E— = 2R Where R = Circumradiut and a, b, c are sides of triangle.
sinA  sinB  sinC

b o &+ b e
Cosine rule; cosh=———, tosB=——— cosC=——
Zbc 2ac Zab

Trigonometric ratios of half - angles:

~-bj|s- || [s—a] s—bjis—c])
[a) 5in3ﬁ'= 5 --“5- {-' whereZs=a+b+¢ (b) tuaﬁ: sl I (] tan-"n- - # --E e
2 ‘|| b 27V e 2

s[s-a)
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4.1 Conditional Identity

‘Whien the angles A, B and C satisfy a given redation, we can establish many mteresting identities connecting the
trigenomaetric functions of these angles. To prove these identities, we require the properties of compéemantary and
supplemnantary angles, For exsample, if &4 + B+ € = =, then

losin|B<+C)=sinh cosB = —cos|C+ A 2 cos|A+B)=—cosCsinC =sin| & +B)
N Al ; H A
3. tan|C+A)=—tanB,cot A =-cot{B - (| & -:;ﬁ.T = "'“'5.'-'3337 = #i—
& LA B . A B+ £ B+C A B C+A
2 S| = O SN = 0 —— 8, lan—— =t - =col—
z - SR 2 2 2

Some Important Identities: if A+ B+ C = then

2 cotBoot Ce ctCeot A » ot Aot = 1
B ' Ay

A, i 3
- mti +LOf = + 0ot — = oot — ok — ot —
4 2 2 2 Fl

2

1. tand « tank + tanC = tand tank tanc

C it f 1
3 IanErnr:—'- tm'.E:mr.— -'ran:-mnE: =1
2 2 2 2 2 F.

5, San2A 4+ sin2B + an2C = 45inA inB sinC 6, cos2h s cos B 4o = -1 -deosAcosBeasC

y o B s

Tocos"A+cos- B+oos™C=1-2cos AcosBoos B. sinA+sinB+sin =4cos—cos _--L'm-;
- Y C

9 cosA+oosscosl =1 —-‘-'I':IHF?IH%'EIH—-

Inverse Trigonometric Functions

sin~1(sin@) = 6, for all 6 € [—g,g] cos™'(cos0) = @, for all 8 € [0, 7]

tan~!(tan @) = 6, for all 6 € (—=,7) cosec™" (cosec 6) = 6, for all 6 € [-7,7],
272

6+0

sec™1(sec9) = 0, for all 6 € [0, x|, 9;&%

cot™1(cotO) = 0, for all 6 € (0,n)

sin(sin™1x) = x,for all xe [—1,1]

cos (cos™1x) = x, for all xe [—1,1]

tan (tan"!'x) = x, for all xée R

cosec (cosec™ x) = x, for all x€ (—o0,— 1] U
[1,00)

sec(sec™ x) = x, for all x€ (—o,— 1] U [1, o)

cot(cot ™' x) = x, for all xe R

sinT1(— x) = — sin~x, for all xe [—1,1] cos™1(—x) = m— cos™lx, for all xe [—1,1]
tan‘l(—x) = — tan~! x, for all xe R cosec™}(-x) = —cosec™?! x, for all x€ (—o0,— 1] U
[1,0)

sec™(—x) = m— sec™!x, for all x€ (—o,— 1] U [1,0)

cot™'(—x) = m— cot7lx, for all xe R

)

cosec™1x, for all x€ (—o0,— 1] U [1, )

sin™?!
- 1
cos™?t (—)
X

sec™lx, for all x€ (—oo,— 1] U [1, 0)

. (1) {cot‘lx, forx >0
tan ' (=) = 1
-m+ cot™x, forx <O

“lx =7, for all xe [-1,1]
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P T b "-\ ‘- y - rd F F Y #
k) o i ¥ - i o = k4 4 k-
\x __,z"‘"_ _.—""‘." X \ ; e - A ¥ o y i -~ -, F 'y /’I- 5 _‘,5 A A
|- g [ & - -
- Tl T
A // k X
In ARBE, FA+£B+2C=nmn o
f X X
h"d {a) sin{B+C}=sinj=-A]=sinA i
. | ik) msi(—m:cm[n—a}:—msﬂ 4
w At /
¢ (e) Sin-—= —5|n| = J X
B+C_ o (m A)_ A /
..\.x {d) cos = usl Fan | =sin3 X
= ..v"
Sine rufe: In. L L = 2R Where R = Circumradius and 3, by, c-are sides of triangle. .
sind sinB sinC 4
3 2 2 2 2 2 2 2 2
. Cosine rule: cosé = blz% , cosB = % cosC = 'EI:‘TL_. ,
Trigonometric ratios of half — angles:
,f A [s—=b}ls-c) A s{s—-a l A :s I:|H£ |
X, a - ———— where2s=a+b+c (b ==y fr— €} lan=—a  |———
(&) sin= = T - (b) cos > o (<] 2 o7 v
Area of a tri le : 1 S 1 i
/ angie & 4 = —bosind =-—casinB = —absin y
¥ r 2 2 '
. f a+b+e
A Heron's formula: 4= [s{s—aj(s—b){s-c|, where 5=T. .
A i
; a b o~ abc i
. [ N .. SR o 1 L=} R
y ESenmeioh Raciue: Z5inA  2snB  2sinC  AA \
.-‘""
" Incircle Radius :  (a) r = -‘51. (B) r={s- allan'_:—';- | r=|s- h}tan| g- | and r=s —c}tar1| % | .
Radius of the Escribed Circle : J
By Ft ool A "
L ga! e gagt B g
a -
\ {b) n =stan%, rp= stan%, I =itﬂﬂ% b
cnssmﬁi cns%cm% qns%rns%
£} n=a el = b e o
COs— COsS— o5 — bt
2 2 2 i
) (d) rn=4R EIH% cusgcns%. r, =4R cus%sln%cﬂs%. = ‘iRch%casEsmE
Length of Angle bisector and Medlan: X
A
" fhecoos— N,
jf m, = %u'z &% and p, = _2. — m, - length of median, fi, - length of bisector, R
% *C il
SN The circle which can be inscribed within the triangle so as ta touch all the three sides of the trangle is called v
o the incircle of the triangle. The centre of the incircle is called the incentre of the triangie and it is the paint of b 7
intersection of the intermal bisectors of the angles of the triangle. The radius of the circle is called the |nradius of Fa
the triangle and is usually dencted by nn-Radius: The radius r of the inscribed cincle of a triangle ABC is given by d
.
Ny B Al (B} _ (C
A (@ r= - (i r=|s5 a]tan| =) w5 t‘]fﬂ“lj | and r=(s cltﬂnl 3 | »
&, ‘B [ Ay [ Bl (A "4
! - f O . | B : i
N asin| 3 |s-n|l = | hsm| 5 Iml 5 | r.s-ri| = "SII'II 5 N
" (B} r= 3 . F= anid r=— o
t.' " ke e i L = ]
{. Y e | L) 3 | o 3 | Figure 19.11 W'
W ~
v g
\. p * \rf_-'\‘ # 4 ¥ .\__ J o XJ_.. & A, p -\. Fa® P, o p o) p i Iy P ; - oy - ’{_
.f’\..‘ AL A : _;’\_\ oA ¥ ] 4 W Y R 3 . E f.‘\ ,'I"\
F w nt 'y L ™ a "y d i ; 'y £ ! o "



= cos~1(2x%? — 1), ifo<x<1
2cos "t x = - 5 i
2w —cos~1(2x% — 1), if—1<x<0
{cos_1(4x3 — 3x), if éSxS 1
3cos‘1x=4 2m — cos™1(4x3 — 3x), if —%sté
|
( 2m + cos™ (4x® — 3x), if —1Sx£—%
— 2x =
(tan 1(1_x2), if —1<x<1
2tan™'x = { mw+ tan~? (:’;2), if x>1
L— 7+ tan™! (:’;2), if x<-1
_q (3x—x3 . 1 1
{tan (1_3X2), if 5<*<H
_ .3
3tan"'x =< 7w+ tan™? (31913;2) if x> %
_ _1 (3x—x3 i _ 1
k T+ tan (1_3x2), if x< NG
(sin~t (), if —1<sx<1
2 tan 1x=Jn—sin_1(1izz), if x>1
o win—1 2x 5 _
m — sin (1+x2), if x<-1
_1 (1—x2 i
cos 5 if0<x <o
2tan"1x (1+1x_222
—cos_1(1+x2), if —oo<x<0
V1—=x2
sin™! x= cos™1(v1 — x2) = tan~! \/1’_(7) = cot™?! (%) = sec™?! (\/;7) = cosec™ ! G)

cos™tx=sin"1(v/1 — x2) = tan~! (Jlx_x> = cot™?! (\/1i7) = sec™?! (i) = cosec™?! (ﬁ)

tan~! x= sin™?! (\/117) cos™* (W = cot™?! (i) = sec™ (V1 + x2) = cosec™? (%xz)

Calculus ( Limits, derivatives and Integrals)

Limits

lim f(x) exists & lim f(x) = lim_f(x)
x—a x—-a~ x—at

Let )lcm}l f(x) =1and )lcln’é g(x) =m. If | and m both exist, then
(i) lim kf (x) = k lim f(x)
x—a x—a
(ii) Iim(f+g)(x) =1limf(x)+ limgx)=1l+m
x—a x—a x—a
@iii)  lim(fg)(x) = lim f(x) lim g(x) = Im

lim f(x) 1

@ lim (L)oo ==L

11m g(x) m

v lim{f(a)}9® =

X — gt 4 sinx
lim—————— =na™?! lim =1
x—=a X — A x-0 X

tanx sin(x — a
lim =1 = lim 7( ) =1
x-0 X x—a X —Qa
~ tan(x —a) . 8 : log(1 + x) _
xlgclz. X —a o xli% X B
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T
tan 'x + cot™lx = for all xé R

sec™!x + cosec™lx = %’ for all x€ (—oo0, — 1] U [1, o0)

ifxy<1

tan™!x + tan 1y:{n+tan_1(1 ;y)' if x>0, y>0andxy > 1
I—Tr—l—tan_l( +y) ifx<0 <Oandxy >1
k 1—xy/’ ! Y Y
i
( tan_1(1+x3;), if xy>-—1
tan"lx —tan 'y = { w+tan™?! (u) if x>0 y<Oandxy < —1
Y 1+ xy/’ ’
—n+tan_1(x_y) ifx<O0 >0andxy < —1
k 1+xy/’ ’ Y Y
If X1, X5,%5,00ucnen. .X, € R, then
- _ S1—S3+S5—Sy+ ...
tan"lx; +tan"lx, + ... +tan"lx, = ( L8 s 7 ), where S,
1—S,+5,—Sg+Sg++....
denotes the sum of the products of x;,x,,%x5,........ .X, taken k at a time.

sinTlx + sin7ly

sin_l(x Ji—-y2 +yV1 —xz),

m— sin"i(x /1 —y2+ yV1—x2),
- — sin"!(x /1 —y2 + yV1—x2),

if—1<x,y<landx®*+y?<1
or
if xy<Oandx?2+y?>1

if0o<x,y<landx?+y?>1
if—1<x,y<Oandx®+y?>1

sin"1(x /1 —y2 —y V1 — x2),

m— sin"i(x/1—y2—yV1—x2), if0
—m — sin"'(x /1 —y2+ yV1—x2),

sin“tx — sin7ty

if —1<x,y<landx?*+y?<1
or
if xy >0andx? +y?>1

<x<1,-1<y<O0andx®*+y?>1

if—1<x<00<y<landx®>+y?2>1

Cos_l(xy— WJl—_ﬁ),
2 — cos_l(xy— m\/l——yz),

cos™'x + cos™?

y
if—-1<x,y<landx+y=0

if—1<x,y<landx+y<0

cos_l(xy + m\/l——yz) ;
- cos_l(xy + W\/l——yz)

cos™'x —cos7ly

if—1<x,y<landx=<y

if 0=x=<1-1<y<0andx=y

[ sin~1(2xV1 —x2), if —%Sxﬁ\%
2sin"lx = {7 — sin"1(2xV1 — x2), if % =x<1
L—n — sin1(2xV1 — x2), if—1<x< —%
[ sin~1(3x — 4x3), if —; <x< %
3sin"lx = !n—sin_1(3x—4x3), if §<xs 1
L—n—sin_1(3x—4x3), lf—le<—§
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° X _ 10 e* —1
lim = log_a, a>0 lim =1
x—0 X € x-0 X
Differentiation (Derivatives, Tangents & Normals)
1 _ ny — n—1 2 i —
dx(x)—nx dx(x)_l
d d 1
s Ix (c) =0 (ciaconstant) 4 Ix (Vx) = P
5 d 1 6 d 1 -1
a(logex)—; prl Qoo Rliw
dx(e)—e dx(a)—a log.a,a>0a=#1
9 2 (x*) = x*(1 + log_ x) 10 | d . _
dx e dx (a ) =0
11 —(sin x) = cosx = — (cos x) = —sinx
dx dx
d d
= — (tan x) = sec? x 14 | 4 (cot x) = — cosec? x
dx dx
15 d 16 d
—(sec x) = secxtanx — (cosec x) = — cosec x cotx
dx dx
17 | 2 rin-1, = (1 a -1,y —_1 a -1,y _ 1
wOnT 0= () SlanTw=gn, et e
d _ -1 d _ -1 d _ -1
E(COS ! x)= (\/l—xz)’ E(COt 1x) = Tex2 E(Sec ' o |x|[Vx2-1
18 | 4 - i3
Lk fEYI =0+ Zf(x)
1 a -4
2 |l fmy=c f)
0|4 gren &
dx c c
21 | 4 -4 a
SU g} =— )+t —gX)
22 | L) x g} = F) - g6 + g(x) = f (%)
23 | 4 {f(x)} _ WL )~ FE g
dx Lg(x) fg(x)}?
24 :—x{f(x)g(x)h(x)} = ') g)h(x) + f(x)g'(xX)h(x) + f(x)g(x)h'(x) =
d d d
2 f ) XgCOR(x) + =g () Xh()f (o) + o~ h(x) Xf(x)g(x)
25

;—x (fifafsfy) =f1" fofsfa+ f1 62 f3fa+ f1 o £3' fa+ f1 o £3 4
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26. | A real valued function f(x) defined on (a, b) is said to be differentiable at x =c€
(a, b), iff lim % exists finitely
x —C -
o g [ f@ L fG) £
x —c~ X —cC x —ct X —cC
. fle=h)— f(c) . fle+h)—= f(o)
< lim ———— = lim ———MMM—
h—o0 —h h—0 h
< (LHD atx =c¢) = (RHD atx = ¢)
27. | If P(x1,y1) is a point on the curve y = f(x), then
y—y; = (Z—z)P (x — x1) is the equation of tangent at P.
y—y = — ﬁ (x — x,)is the equation of the normal at P.
dx/p
28. | The angle between the tangents to two given curves at their point of intersection is
defined as the angle of intersection of two curves. If C; and C, are two curves
having equations y = f(x) and y = g(x) respectively such that they intersect at
point P. The angle 6 of intersection of these two curves is given by
dyy _(dy
(ﬁ)cl (dX)CZ
tanf = dy dy
1+ (a)cl (ﬁ)cz
If the angle of intersection of two curves is a right angle, then the curves are said
to intersect orthogonally. The condition for orthogonally of two curves C; and C; is
dy dy
(), * (G2, = 1
dx/c, dx/c,
29. | Two curves ax? + by? = 1 and a’x? + b’y? = 1 will intersect orthogonally, if
1 1 1 1
a b a b
Integrals (Indefinite & Definite)
1 xn+1 2
fx”dx= + C, n+-—1 Odx=C
n+1
= 1
3 Jide=x+C . J;dx=logex+C
1 1
5 f——z dx=—+ C 6 fexdx=ex+(3
x x
7 emx 8 ax
femxdx= + C faxdx= + C, a*x—1,a>0
m log. a
9 Jsinx dx=— cosx+ C 10 Jcosx dx = sinx + C
11 fseczx dx = tanx + C 12 fcoseczx dx = —cotx + C
13 fsecxtanx dx = secx+ C 14 fcosecxcotx dx = —cosecx + C
15 ftanx dx = loglsecx|+ C 16 fcotx dx = loglsinx| + C
17 J’

T X
secx dx = log|secx + tanx|+ C = logltan(z+z)| + C
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40 fon/z log sinx dx = - /2 loge2

41 Area bounded between two curves y=f(x) & y=g(x) is
A= ff(yz — yp) dx or A= f; f(x)-g(x) dx , where a & b are abscissas of intersecting

points.

42 In a differential equation is expressible in the formz—z + Py =(Q, where P and Q are
either constants or functions of x, then it is called a linear differential equation.

Here Integration Factor IF= ef Paxg,

the solution of this equation is given by

y.IF = [Q.IFdx+C ory(e/P%) = [(QelP™)dx+C

Sometimes a linear differential equation is in the forrn% + Rx =S, where Rand S

are either constants or functions of y. Here IF= ef Rdyg,
The solution of this equation is given by

xIF = [S.IFdy+C orx(elR®) = [(SelR¥)dy +C

Matrices

Let A = [a;] be an m X n matrix. Then, the transpose of A, denoted by AT isannxm
Matrix such that (AT)l-j =ajforalli=1,2,m;j=1,2,..,n

Following are the properties of transpose of a matrix:
()(AT)T = A(ii)(A + B)T = AT + BT (iii) (kA)T = kAT (iv)(AB)" = BTAT(v)(ABC)T = CTBTAT

1

+(adj 4)

If Ais a non-singular matrix, then A~ =

If A and Bare two invertible matrices of the same order, then (4B)™!= B~ 1471

A system AX = B of n linear equations in n equations has a unique solution given by X =
A™1B, if |A] # 0.

If |A| = 0 and (adj A)B = 0, then the system is consistent and hasinfinitely many
solutions. If [A] = 0 and(adj A)B # 0, then the system is inconsistent.

A homogeneous system of n linear equations in n unknowns is expressible in the form

AX =0O. If |A| # 0, then AX =0 has unique solution X = 0, i.e. x; = x, = -+ = x, = 0. This
solution is called the Trivial solution. If |4| = 0, then AX =O has infinitely many
solutions.

[KA|= k" |Al[adjA[=|A[~  adj(adjA)=|A|—A
[adjA]==adj(A?)  [AT]=(A7) T

(A=A A(adjA)=(adjA)A=TIA|

17 [




18 fcosecx dx = log|lcosecx — cotx|+ C = log|tan—| + C
19 — . — 1 R -1
f dx =sin"'x +C, [ dx =tan x+C,f|x|m seclx+ C
20 f = —logelax+b|+ c
_|_
21 f ! = ltan_1—+ c
_|_
22 f _ 1 -
— a? - 2alo‘g|x + a| ¢
23 1 _ 1 |a + x|
f—az— P dx—zaloga_x+C
24 JW dx—log|x+\/x2+ a2|+C
25 _ (2 2
fﬁdx—log|x+ x —a|+C
26 1 I
fm dx = sin a+ C
1
2l J\/x2+a2 dx=; x? + a2+5a2log|x+\/x2+a2|+6
1
28 f x2 — @2 dx=§ x2—a2—5a2l0g|x+\/x2—a2|+6‘
1
29 f aZ — x2 dx = =\Ja? — x% + —a®sin" 1=+ C
2 2 a
30 If u and v are two functions of x, then
du
fuv dxzu(jvdx)— J{—Jvdx} dx
dx
31 | [errm+ freotax=e*fe+ ¢
= X sinbx dx = - in b b b c
e sin bx x—m{asm x — b cos bx}+
X fe“x cos bx dx = L{a cosbx + b sin bx}+ C
a? + b2
34 f: f)dx = — fba f(x)dx, i.e. if the limits of a definite integral are interchanged,
then its value changes by minus sign only.
35 facf(x)dx= f:f(x)dx +fbcf(x)dx, where a< b < c.
The above property can be generalized into the following form
f(ff(x)dx s faclf(x)dx + fcclzf(x)dx + o, + fcif(x)dx
Where a<c; <c, <c3...... <cCph_1<cCp<bhb.
36 f:f(x)dx — fabf (t)dt, i.e. integration is independent of the change of
variable.f:f(x)dx = f: FGODdy= f;f(z)dz = f: f®dt
37 f:f(x)dx = fabf(a+b—x)dx
38 Zfoaf(x)dx, if f(x) is an even function i.e. f(—x) = f(x)

S, f)dx = { 0, if f(x) is an odd function i.e. f(—x) = — f(x)
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Vectors and 3-D Geometry

If d and b are two non-zero vectors inclined at an angle 6, then

Scalar Product or Dot Product of two vectors — Let @ and b be two vectors and let
6 be the angle between them. Then, the scalar product or dot product of d and E,
denoted by d.b, is defined as

a.b= |d’||5|cos€ = ab cos .

a.b ap
Therefore cosf = == = 6 = cos™ ! (7)

lal|b| |al|b]

o ., »_@b__, - I~ > L _a@b _» .
Projection of d on b = W =a. b Projection of b on a = H =b. a
d.b = 0 © d is perpendicular to b d.b =b.d
d.da = |dl? o7 SN oo
ma.b = m(a b) = a.mb, for any scalar m
md.nb = mn(d. l_;) = @.mnb, for scalars m ,n |[1’ 4 B| < lad| + |B|
— — - 12 = *’ =
|é —b| = ldl — |b| | +b|" = |dl?+ || +2(d.b)

(a+5)(@—5) = lal*>— || d.b> 0, iff 6 is acute.
d.b< 0, iff 8 is obtuse.

If @, b and ¢ are three vectors, then
= 2 ) -
la+b+¢ =l1dl*>+ |b| +I1¢1?+2(d.b+ b.¢+ ¢.d)

Ifd = a1{+ a2}+ a3i(\ andgz b1{+ bz"]\"’ b3],(\,then71’.f)=a1b1+a2b2+a3b3.

Triangle law of Addition for Vectors — In a AOAB, if B
04 and 4B represent @ and b respectively, then OB
represents(d + b).

=)
+
»

Parallelogram Law of addition for vectors — In a I 7
parallelogram OABC, if 04 and AB represent d
and b respectively, then OB represents(d + I;)

T

Vector Product of two vectors — Let d and b be two &
nonzero, nonparallel vectors and let 6 be the angle
between them such that O <f6<mr. Then, the vector i

product of @ and b is defined as
G x b= (1dl|b|sin@) A = 6 = sin~! {'l“aﬁ;'}
Where j; is a unit vector perpendicular to both

d@and b, such that d,b, 7 form a right-handed
system.

Ep

Volume of Parallelopiped — If d, b, ¢ be three D
vectors then the scalar product of @ with the C

vector product of b and ¢ is called the scalar triple ca g

product of the vectors d, b, . It is written as
a az; das

by b, bs
€1 Cx C3

[e] :]‘.r A
V = d.(b x &) = [a@bé] = [béd] = [¢ab] =

Vector Triple Product — If @, b, ¢ be three vectors then the vector product of d@ with
(b X @), is called the vector triple product and is written as
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- - 5O\ o i .} ]2
dx(bx?)=(adb— (d.b)é= a, a, as
byc3 —bzc; bscy —by 3 bicy; — by
(@) ar (I gm ABCD) = |& X I;|, where 4B =d B v
and AD =b. v
Ll ? =
T oAE
g
(b) ar (A ABC) = l|Ei x b , where AB =d and AC =b. Ry T E
2 — ——
B c
(c) ar(quad.ABCD) = %|A—C) X ﬁ|, where AC and BD b |
are its diagonals.

Co-linearity — The points A, B, C with position vectors d, B, ¢ are collinear if and
only if

(b x &)+ (@xa+(@xb)=0
Area of Triangle — If @, B, ¢ are the position vectors of the points A, B, C, then
The area of triangle = A = %[(1—5 x &)+ (€ x @) +(d@ x b)]

Equation of a line passing through two given points —
Vector Form — The vector equation of a line L, passing through two given points A
and B with position vectors r; and 75, is given by
r=r+A07— 1)

Cartesian Form — The equations of a line passing through two given points

A (x1,¥1,2,) and B (x,,y,,2,) is given by

X—X1 _ Y—Y1 _ Z—Z1 X—X1 _ Y—Y1 _ Z—Z3

a b ¢ Xp=X1  Y2=¥1  Z2—71
Where a,b,c are the direction ratios of the line

(i) The vector equation of a line through a point with position vector 7; and
parallel to m is
r=r+Am
(ii)  The vector equation of a line through a point with position vectors 7; and 7,
is
T=1+A05— 1)

Cartesian Form — Three given points A (xy,y;,21), B (x5, ¥,,2) and C (x3, y3, 2z3) will
be collinear if

Xs~™X1_Ys™ N _ L34
X2 X1 Y2—N1 Z2 — 21 .
Vector Form — Three given points A, B, C with position vectors d, b, ¢ respectively

are collinear ifé¢ = (1—)d+ 1b
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The vector equation of a plane passing through a point having position vector a
and parallel to vectors b and ¢ is
7= d+ mb+ né where mand n are parameters.

or 7.(b x &) =ad.(b x @)

If a plane makes intercepts of lengths a, b, ¢ with the x-axis, y-axis and z-axis
respectively, the equation of the plane is g + % + §= 1

Vector Form — The equation of a plane through the intersection of two planes?.n; =
d, and?.n, = d, is given by

F.(ny+An;) =d, +1d,

Cartesian Form — The equation of a plane through the intersection of two planes
ax +byy+ciz+d, =0and a,x + b,y + c,z+ d, = 0 is given by (a1x + by +
ciz+dy)+A(a,x +b,y+cz+d,) =0

The Cartesian equation of a plane passing through points (x;, y;1, z1), (X2, V2, 22)
and (x5, ys3, z3) is

X — X1 Y= zZ—Z;
Xy — X1 Y2—Y1 Zz2—Z1| =0
X3 —X1 Y3 — Y1 Z3—Z1

The equation of a plane parallel to the plane
@7r.n=dis7.n=d,
b)ax+by+cz+d=0isax+by+cz+ A=0

The length of perpendicular from the point (x,, y;, z;) to the plane ax + by + cz +
d=0is
laxy + by, + cz, + d|

The distance between the parallel planes ax + by +cz+d, = 0 and ax + by + cz +
d, = 0 is given by
ld,—d4|
V& + b2 % o2

The equation of the family of planes containing the lines
ax +by+ciz+d, =0and a,x + b,y +c,z+d, =0 is

ax + by +ciz+d, + A(a,x + b,y +c,z+d,) =0,
where A is a parameter.

The equations of the planes bisecting the angles between the planes a;x + b,y +
c1z+dy =0 and a,x + b,y + c,z+ d, = 0 are given by
a;x +biy+ciz+dy N a,x + b,y +c,z+ d,

Va? + b2 + ¢2 ~ “a? + b?% + ¢?
The angle 6 between a line x_lxl = y:nyl == _nzi and a plane

ax + by + cz+ d = 0 is the complement of the angle between the line and normal to
the plane and is given by

sin 6= altbm*cn The angle 6 between the line # = @ + A b and the plane
\/a2+b2+62\/lz+m2+n2

o L . b.il
r.n = d is given by sinf= =—
|b|I7]
. X —Xx - zZ— Z X — X b z—Z .
Two lines T t and 2= Y22 - 2 are coplanar, if
51 my ng > my na
X2 —=X1 Y2— Y1 Z2 —Z1
L my ny =0
I, my np
and the equation of the plane containing them is
X—=X1 Y= V1 Z—Z; X=Xz Y— Y2 Z— 23
L my ng =0 or L my n; |=0
I, my ny l; my ny
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Vector Form — Let the vector equations of two given lines be

=7 +Any and ¥ =T, +n, , where A and u are scalars. Let 8 be the angle

between these lines. Since the given lines are parallel to n; and n, respectively,

the angle between the given lines must be equal to the angle between n; andn,.

n;. n,

cosf = ————=

n7l7z|

These planes are parallel, if n; is parallel ton,.

These planes are perpendicular, if ny . n, = O.

Cartesian Form — Let the Cartesian equations of two given lines be
X—Xq Y= —Z1 X—X2 Y— X2 Z—Zy

= = and: = =
a; b, C1 az b, C2

Then, the direction ratios of these lines are a4, b;,c; and a,, b,, ¢, respectively.

Let 6 be angle between these lines. Then
aia,+ biby+ cicy

cos @ =
(Jalz + b2+ 012)(Ja22 +by% + C22>
..a b c
These planes are parallel, if — = =+ = 2
az b, C2

These planes are perpendicular, if a;a, + b;b, + c,¢c, = 0

Vector Form — (i) The shortest distance between two skew lines
(b1 x bz) (@ — @)

by < by

?=E’+AHand?=Tz+yEisgivenby d=

(ii) Let L,(# = @ + Ab;)andL,(# = @, + ub,) be two parallel lines. Then these
lines are coplanar if
a_1>-(b1 x bz) = @-(b1 x bz)

b x (az — ay)
||
Condition for two given lines to intersect — Suppose that the lines

7=a; + Ab, and ¥ = @; +u b, intersect. Then the shortest distance between
them is zero, i.e.

Distance between Parallel Lines = |BM| =

[(a;_ a’1>)b1b2 = 0.
Cartesian Form - The shortest distance between two skew lines

X=Xy _ Y= YV1 _ Z—2Z X—Xp _ Y= Y2 _ Z—Zyp. .
= = and = = is given by
a; by C1 az b, C2
X2 =X1 Y2— Y1 Z2 —Z3
a by C1
d = az b, C2
vD

where D = {(a;b, — ayb;)? + (byc; — byc,)? + (cia, — cya4)?}

Vector Form — If ; is a unit vector normal to a given plane, directed from the
origin to the plane and p is the length of the perpendicular drawn from the

origin to the plane then the vector equation of the plane is #. ;; = p.
A vector normal to the plane ax + by +cz+d = 0 isii = ai + bj +ck .

Cartesian Form — If a, b, c are the direction ratios of the normal to a plane,
then the equation of the plane is ax+by+cz+d=0

Vector Form — The vector equation of a plane passing through a point having
position vector d and normal to 7 is

(#F#—-ad).n=0 or ".in=a.n

Cartesian Form — The equation of a plane passing through a point P(xq,y;,2z;) is

a(x —x;) + b(y —y,) + c(z — z;) = 0, where a, b, c are constants.
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Probability & Conditional Probability (XI-XII)

| Probability

Probability of an event: - If there are n elementary events associated with a random experiment
and m of them are favourable to an event A, then the probability of occurrence of A is defined
as:

_ m _ Favourable number of elementary events

P4 = n Total number of elementary events

The odds in favour of occurrence of the event A are defined by: m: (n —m)
The odds against the occurrence of A are defined by :(n—m) :m.
The probability of non-occurrence of A is given by P(A) =1—P (4)

If A and B are two events associated with a random experiment, then
P(AUB)=PA)+ P(B)— P(AnNB).

If A and B are mutually exclusive events, then
P(AUB) = P(A) + P(B).

If A, B, C are three events associated with a random experiment, then
P(AUBUC)=PA+PB)Y+ P(C)— PANB)— PBNC)— P(CNA)+

P(ANBNC)
If A and B are two events associated with a random experiment, then
(i) P (A N B) = P (B) — P (AN B), i.e. probability of occurrence of B only

(ii) P (A n E) = P (A) — P (AN B), i.e. probability of occurrence of A only

(iii) Probability of occurrence of exactly one of A and B
=P(A)+P((B)—2P(AnB)=P(AUB)— P(ANB)

o e Number o avourable outcomes
Theoretical Probability = LAof

Total number of outcomes

Number of favourable trials

Experimental Probability =

Total number of trials

Theorem of Total Probability: - Let Eq, E,,........ , E, be mutually exclusive and exhaustive events
associated with a random experiment and let E be an event occurs with some E;, then

P(E) = zn: P (g) .P(E)

i=1

Bayes' Theorem — LetE;, E,,........ ,E, be mutually exclusive & exhaustive events, associated with
a random experiment and let E be any event that occurs with some E; then

E
) (Ei) P (E).P(Ei)

Probability distribution of X is given by
X X1 L T Xn
P(X) P, Py | o P,

n
Where each P; = 0 &Z P =1

=1
n

Mean u =E(X) = inPi Variance 6% = (inzpi —ﬂz)
i=1

Standard Deviation o = +/Variance

Binomial Distribution: PX=1)= nc,prqr, where p&q are probability of success & failure
andp+q=1.
n

Mean pu= Z x;P; =np
i=1

Variance 0% = (Z x;2P; — HZ) = npg
Standard Deviation o =+/Variance = \/npq
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N4

Some other important and useful facts & statements

Sum of all the interior angles ofa polygon = (n- 2) x 180°,
where'n' is the number ofsides of the polygon

360°

Measure of each Exterior Angle =

n
360° (n- 2) x 180°
n

Measure ofeach Interior Angle = 180° —

n(b—a)
N
the sequence of the rational number and N is the total number of rational numbers which

we need to find.

Rational Number (between two given rational numbers ‘a’ and ‘b’) = a + , where n is

Euclid’s Division Lemma a = bq + r, where a is dividend, b is divisor, g is quotient and r
is remainder.

The Fundamental Theorem of Arithmetic LCM X HCF = Product of the numbers

The Result of the Fundamental Theorem of Arithmetic
p.q.7.HCF(p,q,7)
HCF(p,q).HCF(q,7).HCF(p,T)
p.q.m.LCM(p,q,7)

LCM @, .LCM(q, 7). LCM(p,T)

LCM (p,q,7) =

HCF (p,q,7) =

fn A ABC, the rid-pesnts of the sides BC, CA and AB sre DE and F respectively, The lines &0, BE and CF are called
mediars of the I||.v-!__|||,=l ABC, The paints of concurrency of thres madiang & called the centrolid Ganerally it 5
represented by G

] y y A
Also, A0 - ‘E.«rn BG=ZBE and CG=2CF
Length of medians from Figure 8.12
F :
] y .,1‘- bf et <?
= AD* =b" +=--ab
a T b
. B2 -at VbR
- jpt - Bt = AD = —oab" 2t -
4 2 B C
Similarly, BE = 222" - 2 -b? and CF = =2’ = 20 - ’
M T g v e L bl Figure 19.12
Apollonius's theorem - "the sum of the squares of any two sides of any triangle equals twice the

square of half the third side, together with twice the square on the median bisecting the third side".
For a triangle ABC with M be the midpoint of its side BC,
AB? + AC? = 2{AM? + (BC/2)%

The distances of the arthecanter from the vertices and the sides: If O 15 the arthecenter and DEF the padal triangle
of the A ABC, where AD, BE, CF are the perpendiculars drawn from A,B,C on the oppostte sides BC CAAB respectively
then

(iVOA = 2R cosh, OB = 2R cosB and OC = ZR cosC

() OD = 2R cosBeosC, OE=2R cosCcosA and OF =2R cosAcosB, where R 15 circumradius,

(iiiy The circumradius of the pedal tnangle =

P |

(Iv) The ares of pedal tnangie=2AcosAcosBoosC .

(W) The sides of the pedal trangle are acosA, beosB and ccosC and its angles are m-24, m-28 and n-2C

(wi) Circumradii of the triangles OBC, OCA, QAB and ABC are equal,
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The circumcentre, centroid and arthocentre are collinear.
In any right angled tnangle, the orthocentre coincides with the vertex containing the right angle.

The mid-paint of the hypotenuse of a right angled triangle is equidistant from the three vertices of
a triangle.

The mid-point of the hypotenuse of a right angled triangle is the circumcentreof the trangle.

The centroid of the triangle lies on the line joining the circumcentre to the orthocentre and divides
it in the ratio 1:2

In an acute angled triangle, orthocentre of A ABC is the
in-centre of the pedal triangle DEF.

Orthocentre and Pedal Triangle:

The triangle formed by joining the feet of the altitudes is called the Pedal Triangle.
(i) Its angles are m — 2A, m— 2B and 1 — 2C.

(ii) The sides are a cos A = R sin 2A

acos B=Rsin2B

acos C=Rsin 2C

(iii) Circum radii of the triangle PBC, PCA, PAB and ABC are equal.

Excentral Triangle:

The triangle formed by joining the three excentres |4, |2 and I3 of AABC is called the
excentral triangle.

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is
so named because it passes through nine significant concyclic points defined from the triangle.
These nine points are:

The midpoint of each side of the triangle

The foot of each altitude

The midpoint of the line segment from each vertex of the triangle to the orthocenter (where
the three altitudes meet; these line segments lie on their respective altitudes).

The nine-point circle is also known as Feuerbach's circle (after Karl Wilhelm Feuerbach), Euler's
circle (after Leonhard Euler), Terquem's circle (after Olry Terquem), the six-points circle,

the twelve-points circle, the n-point circle, the medioscribed circle, the mid circle or the circum-
midcircle. Its center is the nine-point center of the triangle.

distance between the circumcenter and the orthocentre of triangle ABC
is RV1 — 8cosAcosBcosC

the centroid divides the orthocenter and the circumcenter internally in the ratio 2:1

m — n Theorem:

B mp n cC
If D be the point on the side BC of a triangle ABC which divides

the side BC in the ratio m: n,
BD:DC = m:n, « BAD = qa, « CAD =3, « CDA = 86, then
(m+n)cot®@=mcota-ncotB=ncotB-—mcotC
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Commercial & Financial Mathematics

1 Cost Price = Buying Price + Overhead Expenses
2 Profit = Sale Price - Cost Price 3 Loss = Cost Price - Sale Price
* Profit % = —T_ 100y 5 | Loss% = —2% _ 100%
rofit% = Cost Price 0 95570 = Cost Price 0
6 SP = CP(1+ P%)
7 SP =CP(1—L%)
8 Discount = Marked Price - Sale Price
SP =MP(1—-D%), SP=MP(1+T%)
Where D stands for Discount and T stands for Tax
9 Sales Tax = Tax % of Bill Amount 10 T %
11 Amount = Principal + Simple Interest
12 If the Interest is compounded annually, then
R n
A=P(1+—
( * 100) ’
where A is Amount, P is Principal, R is Rate of Interest and n is time period.
13 If the Interest is compounded half yearly, then
R 2n
A=P (1 —) ,
+ 200
14 If the Interest is compounded quarterly, then
R 4n
A=P(14+-—
( M 400) '
15

n
Compund Interest = P [(1 + —) = 1]

% % %
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