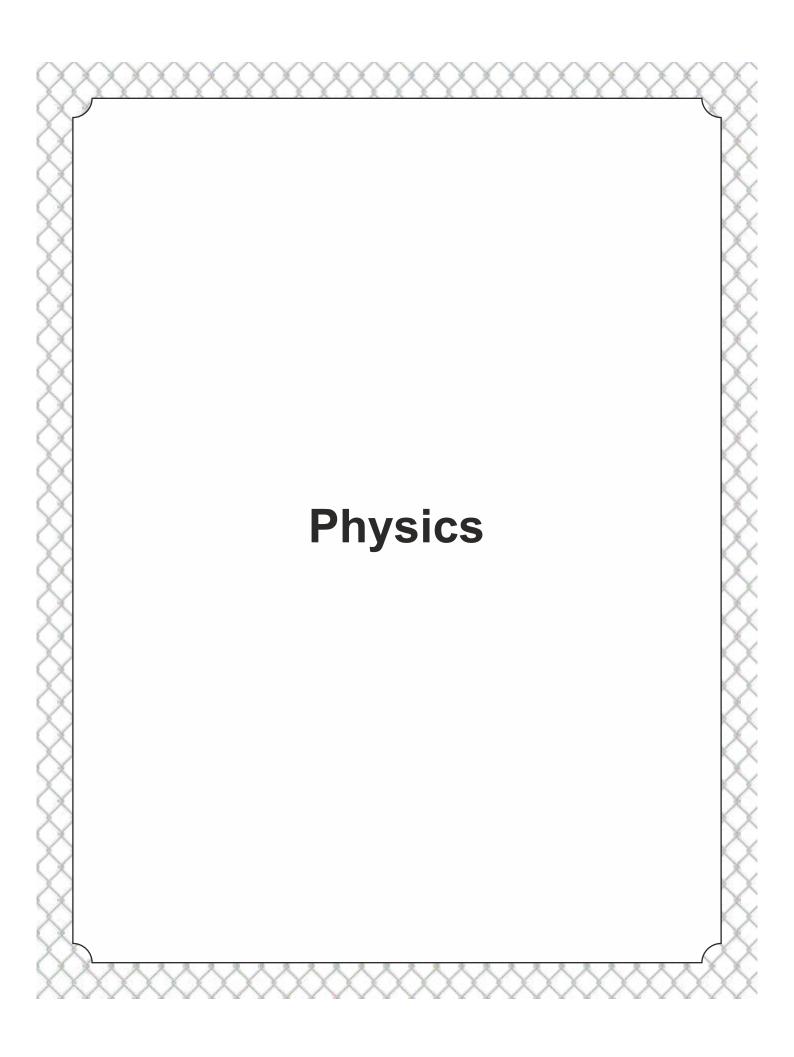
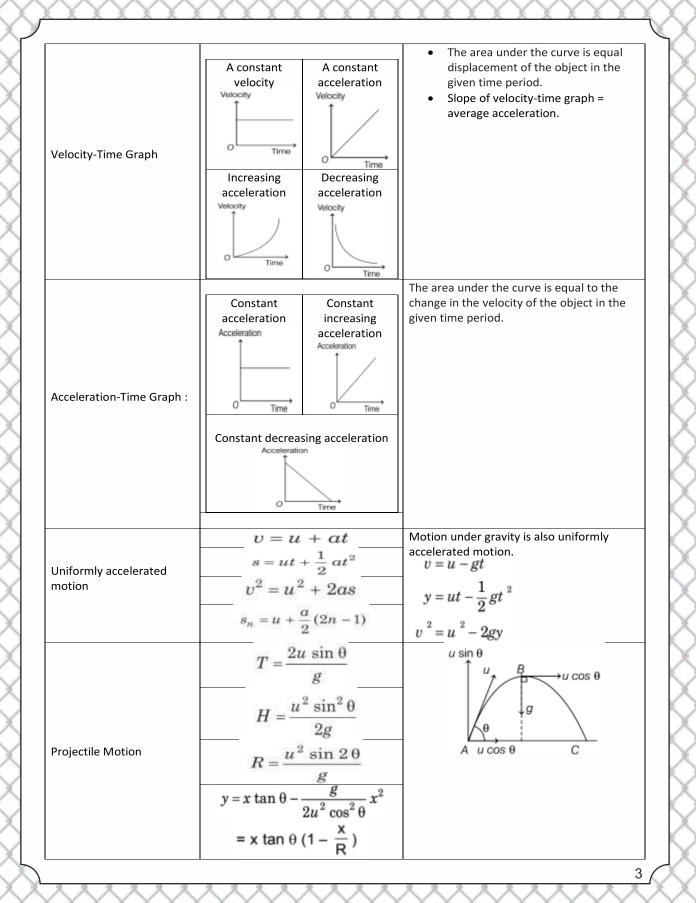


Kharsia Road, Raigarh (CG) 496001, India; Phone: 07762-227042, 299255 website: https://www.opjsrgh.in; e-mail: opjs.raigarh@jindalsteel.com



RITHM: A Compendium Classes IX-XII


Introducing the essential Handbook for Physics, Chemistry, and Maths, designed for students from classes 9 to 12 following the CBSE curriculum.

This concise booklet contains all the crucial formulas and equations necessary to excel in these subjects. From Newton's laws to chemical reactions to algebraic expressions, every key concept is succinctly summarized for easy reference and understanding. With this handbook in hand, students can confidently tackle problems and excel in their academic pursuits from middle school to higher secondary levels.

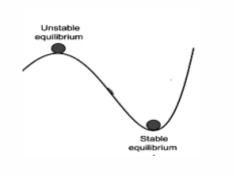
Physics formula Kinematics

Kinematics			
Physical quantity/Phenomenon	Formula/Graph	Diagram/Remarks	
Average speed	Total distance travelled Total time taken	When particle travels distances s_1 , s_2 and s_3 , with speeds v_1 , v_2 and v_3 $= \frac{s_1 + s_2 + s_3 + \dots}{\left(\frac{s_1}{v_1} + \frac{s_2}{v_2} + \frac{s_3}{v_3} + \dots\right)}$ When particle travels with speeds v_1 , v_2 and v_3 during time intervals t_1 , t_2 and t_3 $= \frac{v_1 t_1 + v_2 t_2 + v_3 t_3 + \dots}{t_1 + t_2 + t_3 + \dots}$	
Instantenous speed	$\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$	It is the tangent drawn over an x-t graph at a particular time.	
Average velocity	Total displacement Total time taken	Average velocity and average speed are same when a body moves along the straight line with uniform velocity.	
Average acceleration	Change in velocity (Δv) Time interval (Δt)	When the sign of accelaration and velocity are same then only it speeds up.	
	$\mathbf{v}_{AB} = \mathbf{v}_{A} - \mathbf{v}_{B}$	A B	
	$\mathbf{v}_{AB} = \mathbf{v}_A + \mathbf{v}_B$	A V _B B	
Relative Velocity	$v_{AB} = \sqrt{v_A^2 + v_B^2 - 2v_A v_B \cos \theta}$ $\tan \beta = \frac{v_B \sin \theta}{v_A - v_B \cos \theta}$	$ \begin{array}{c c} & P \\ & V_{AB} & P \\ & V_{A} & P \\ & P & V_{A} & P \\ & P & V_{A} & P & P \\ & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P & P \\ & P & P & P & P & P \\ & P & P & P & P & P \\ & P & P & P & P & P \\ & P & P & P & P & P \\ & P & P & P & P & P \\ & P & P & P & P & P \\ & P & P & P & P & P \\ & $	
Displacement-Time Graph	For a stationary body Displacement A constant velocity Displacement A constant acceleration Displacement Time A constant retardation Displacement A constant retardation Displacement	Slope of displacement-time graph= average velocity.	

Incline plane projection	$T = \frac{\frac{2u\sin\alpha}{g\cos\beta}}{\frac{2u^2\sin\alpha\cos(\alpha+\beta)}{g\cos^2\beta}}$ Range=	у Да В
River-Boat Problem	Time to $cross = \frac{d}{v sin\theta}$ Min. Time to $cross = \frac{d}{v}$ And drift in this case=u. $\frac{d}{v}$ To $cross$ in shortest path : $vcos\theta = u$	d v Sine v Sine
Circular Motion	Average angular velocity $\omega_{\text{av}} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$ Instantaneous angular velocity $\omega = \frac{d\theta}{dt}$ Average angular acceleration $\alpha_{\text{av}} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$ Instantaneous angular acceleration $\alpha = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}$ Radial or centripetal acceleration $\mathbf{a}_r = \frac{\mathbf{v}^2}{\mathbf{r}} = \omega^2 \mathbf{r}$ Linear speed $v = r\omega$ Tangential acceleration: $A_t = r\alpha$	dθ, ω or α (Perpendicular to plane of paper directed outwards for ACW rotation)
	Net acceleration $a=\sqrt{a_R^2+a_T^2}$ $ an \phi = rac{a_T}{a_R}$	O BR
Uniformly accelarated motion in a circle	$\omega = \omega_0 + \alpha t$ $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha \theta$	For retardation α will be taken as negative.

NEWTON'S LAWS OF MOTION

	NEWTON'S LAWS OF MOTION			
Newton's second law	$\mathbf{F} = \frac{md\mathbf{v}}{dt} = m\mathbf{a}$	When Mass remains constant		
Impulse	Force * Time = Change in momentum	AREA UNDER THE GRAPH		
Impulse during period t_1 to t_2	Area under the F- t curve from t_1 to t_2	IMPULSE/Ns		
Thrust on the rocket at any instant	$F = -u \frac{dM}{dt}$	Rocket is an example of variable mass following law of conservation of momentum.		
Max. Static friction and	$f_{max} = \mu_s N$ $0 \le f_s \le f_{smax}$	Figure maximum		
Kinetic friction $f_k = \mu_k \; N \label{eq:fk}$		static riction μ _s N μ _k N Applied Force		
Angle of Friction(θ)	It is the angle which the resultant of the force of limiting friction and the normal reaction(N) makes with the direction of N. μ=tanθ	B F _{lim}		
Angle of Repose(α)	It is the minimum angle of inclination of a plane with the horizontal, such that a body placed on it, just begins to slide down. μ=tanα	mg sinθ mg cosθ		
Acceleration on a rough incline plane	$a = g (\sin \theta - \mu \cos \theta)$	R mg sin θ mg mg cos θ		
Common acceleration and contact normal forces	$= \frac{\text{net pulling force}}{\text{total mass}}$ $= \frac{F}{(m_1 + m_2 + m_3)}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		


	$F_1 = \frac{(m_2 + m_3) F}{(m_1 + m_2 + m_3)}$ $F_2 = \frac{m_3 F}{(m_1 + m_2 + m_3)}$	
Common acceleration and tension	$a = \frac{F}{(m_1 + m_2 + m_3)}$ $T_1 = F$ $T_2 = (m_2 + m_3) a = \frac{(m_2 + m_3) F}{(m_1 + m_2 + m_3)}$ $T_3 = m_3 a = \frac{m_3 F}{(m_1 + m_2 + m_3)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Common acceleration and tension	$a = \frac{(m_1 - m_2)}{(m_1 + m_2)} g,$ $T = \frac{2m_1 m_2}{(m_1 + m_2)} g$	$ \begin{array}{c} a \\ \uparrow \\ m_2 \end{array} $ $ \begin{array}{c} \uparrow \\ m_1\\ m_1 \end{array} $
Common acceleration and tension	$a = \frac{m_1 g}{(m_1 + m_2)}$ $T = \frac{m_1 m_2 g}{(m_1 + m_2)}$	m_2 T a T a m_1
Common acceleration and tension	$a = \frac{(m_1 \sin \theta_1 - m_2 \sin \theta_2) g}{m_1 + m_2}$ $T = \frac{m_1 m_2}{m_1 + m_2} (\sin \theta_1 + \sin \theta_2) g$	$m_2g \sin \theta_2$ $m_2g \cos \theta_2$ $m_1g \sin \theta_1$ $m_2g \sin \theta_2$ $m_2g \cos \theta_2$ $m_2g \sin \theta_1$
Centripetal Force	$F = \frac{mv^2}{r} = mr\omega^2$	"centripetal force" means "force towards the centre". Its not a new kind of force. This force must originate from some external source such as gravitation, tension, friction, coulomb force, etc.
Circular Turning of Roads:	By friction only : $v_{ m max} = \sqrt{\mu r g}$	
Circular running of Nodus:	By bending of road only : $v = \sqrt{rg \tan \theta}$	W. O.

Radius of curvature	$R = \frac{v^2}{a_{\perp}} = \frac{mv^2}{F_{\perp}}$	-
Normal reaction of road on a concave bridge	$N = mg \cos \theta + \frac{mv^2}{r}$	mgcose mg concave bridge
Normal reaction on a convex bridge	$N = mg \cos \theta - \frac{mv^2}{r}$	N Convex bridge
Skidding of an object on a rotating platform	$v = \sqrt{\frac{gr}{\mu}}$	f M
Maximum and minimum safe speed on a banked frictional road	$V_{max} = \left[\frac{rg(\mu + tan \theta)}{(1 - \mu tan \theta)} \right]^{1/2}$ $V_{min} = \left[\frac{rg(tan \theta - \mu)}{(1 + \mu tan \theta)} \right]^{1/2}$	N Sinθ f Cosθ f Sinθ mg
Min. Speed to complete the vertical loop and tension at highest and lowest point	At A= $\sqrt{5gr}$ At C= \sqrt{gr} , speed at C = $\sqrt{3gr}$ Tension at A= 6mg Tension at C= zero	VC TC TB B
Conical pendulum	T $\cos \theta = mg$ T $\sin \theta = m\omega^2 r$ Time period = $\sqrt[2\pi]{\frac{L \cos \theta}{g}}$	T cos ti T h

WORK, POWER AND ENERGY

	WORK, POWER AND	ENERGY
Work done by constant force	W= FS cosθ	F S S
Work done by a variable force	dw=F.dx Total workdone= area under F vs x curve	F W Area X_i dx X_f Displacement
Relation between momentum and kinetic energy	$P = \sqrt{2mK}$	-
Potential energy	$\int_{U_1}^{U_2} dU = -\int_{r_1}^{r_2} \vec{F} \cdot d\vec{r}$	$U_2 - U_1 = -\int_{r_1}^{r_2} \vec{F} \cdot d\vec{r} = -W$ $U = -\int_{\infty}^{r} \vec{F} \cdot d\vec{r} = -W$
Conservative forces	$F = -\frac{\partial U}{\partial r}$	W=work done by conservative force Potential energies are defined only for conservative forces as work done by these forces is independent of path. Ex. Gravitational, spring and electric forces.
Work-energy theorem	$W_C + W_{NC} + W_{PS} = \Delta K$	If only conservative forces do work then, $U_f - U_i = -W = -(K_f - K_i)$ $U_f + K_f = U_i + K_i$ We can't apply the principle of conservation of energy in presence of non-conservative forces. The work-energy theorem is still valid even in the presence of non-conservative forces.
Gravitational Potential Energy	mgh.	Always negative as the gravitational force is always attractive in nature.
Elastic Potential Energy	$\frac{1}{2}$ Kx ²	Turning point $E = K + U = \text{constant}$ $U(x) = \frac{1}{2}ixx^2$ Equilibrium point $X_0 = 0 + X_{\text{max}}$
Electric Potential Energy	$U = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r}$	Positive as well as negative as the electric force is repulsive as well as attractive in nature.
Avg. Power	$p_{av} = \frac{W}{t}$	Represents how fast or slow work is being done.
Instantaneous power	$P = \frac{\vec{F} \cdot d\vec{S}}{dt} = \vec{F} \cdot \frac{d\vec{S}}{dt} = \vec{F} \cdot \vec{v}$	-

Equilibrium(Translational)	$F_{\rm net} = 0 \Rightarrow \frac{-dU}{dr} = 0 \text{ or } \frac{dU}{dr} = 0$	
	Stable equilibrium (U=min.)	
	$\frac{d^2U}{dr^2} = \text{positive}$	/
	Unstable equilibrium (U=max)	
	$\frac{d^2U}{dr^2}$ = negative	
	Neutral equilibrium	
	$\frac{d^2U}{dr^2} = 0$	

9

CENTRE OF MASS

CENTRE OF MASS			
Centre of mass of a system of 'n' discrete particles:	$\vec{r}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \dots + m_n \vec{r}_n}{m_1 + m_2 + \dots + m_n}$	\vec{r}_1 \vec{r}_2 \vec{r}_2	
Centre of mass of a continuous mass distribution	$x_{cm} = \frac{\int x dm}{\int dm}$, $y_{cm} = \frac{\int y dm}{\int dm}$, $z_{cm} = \frac{\int z dm}{\int dm}$	-	
COM of two particle system	COM lies closer to the heavier mass.	m_1 $C.m.$ m_2 m_3 m_4 m_4 m_4 m_4 m_4 m_4	
A hemispherical shell	$y = \frac{R}{2} x = O$	y T	
A solid hemisphere	$y_{\cdot} = \frac{3R}{8} x = O$	y T R Jam.	
COM of Rectangular plate	$x_c = \frac{b}{2}$ $y_c = \frac{L}{2}$	y b → b → T	
A triangular plate	$y_c = \frac{h}{3}$	y. The second se	

A circular cone (solid)	$y=\frac{h}{4}$	y. Ţ
A circular cone (hollow)	$y_{i} = \frac{h}{3}$	у. Т.
A semi-circular disc	$y = \frac{4R}{3\pi} x = 0$	y T R c.m.
A semi-circular ring	$y = \frac{2R}{\pi} x = 0$	y T R tc.m.
Coefficient of restitution	$(e) = \frac{v_{separation}}{v_{approach}}$	 (a) e = 1 ⇒Velocity of separation = Velocity of approach ⇒ Kinetic Energy is conserved ⇒ Elastic collision. (b) e = 0⇒ Velocity of separation = 0 ⇒ Kinetic Energy is not conserved ⇒ Perfectly Inelastic collision. (c) 0 < e < 1 ⇒ Velocity of separation < Velocity of approach ⇒ Kinetic Energy is not conserved ⇒ Inelastic collision.
Perfectly Elastic One Dimensional Collision	$v_1 = \frac{(m_1 - m_2) u_1 + 2m_2 u_2}{(m_1 + m_2)}$ $v_2 = \frac{(m_2 - m_1) u_2 + 2m_1 u_1}{(m_1 + m_2)}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Vertical inelastic collision	$e=\frac{v_1}{v_0}=\sqrt{\frac{2gh_1}{2gh_0}}=\sqrt{\frac{h_1}{h_0}}$ Height covered by the body after nth rebound $h_n=e^{2n}h_o$	$ \downarrow h_0 \\ \downarrow v_0 \\ \downarrow v_1 \\ \downarrow v_2 \\ \downarrow v_2 \\ \downarrow v_3 \\ \downarrow v_2 \\ \downarrow v_3 \\ \downarrow v_2 \\ \downarrow v_3 \\ \downarrow v_4 \\ \downarrow v_2 \\ \downarrow v_3 \\ \downarrow v_4 \\ \downarrow v_5 \\ \downarrow v$
Two Dimensional (elastic) or Oblique Collision	$m_1 u = m_1 v_1 \cos \alpha + m_2 v_2 \cos \beta$ $0 = m_1 v_1 \sin \alpha - m_2 v_2 \sin \beta$ If $m_1 = m_2$ then $\alpha + \beta = 90$	A U B a m ₂ B B m ₂ V ₂

RIGID BODY DYNAMICS $V_a cos\theta_1 = V_B cos\theta_2$ Vasine, Condition for being a rigid /_cose. body MOI: For many particles (system of particles) $i = \int dmr^2$ For a continuous object Perpendicular Axis Theorem [Only applicable (when object is in x-y plane) to plane lamina (that $I_z = I_x + I_v$ means for 2-D objects only)]. Parallel Axis Theorem $I_{AB} = I_{cm} + Md^2$ (Applicable to any type of object) $\frac{2}{5}MR^2$ Solid Sphere $\frac{2}{3}MR^2$ Hollow Sphere Moment of Inertia of some symmetrical objects Ring MR² Disc

11

	Hollow cylinder	MR²	T R M
	Solid cylinder	MR ² 2	
	Thin rod	ML ² 3	90° M,L
	Thin rod	ML ² 12	90°
	Square Plate	$I_{AB} = I_{CO} = I_{EF} = \frac{Ma^2}{12}$	E F C
	Square Plate	$I = \frac{M(a^2 + b^2)}{12}$	M M
Radius of gyration	$I = MK^2$ $K = \sqrt{\frac{r_1^2 + r_2^2 + \ldots + r_n^2}{n}}$		R ₁ m ₁
Torque	τ	e about a point: $ \begin{array}{ccc} & \overrightarrow{\Gamma} \times \overrightarrow{F} \\ & \text{rigid body: } \tau = I\alpha \end{array} $	Lime of action of force
Relation between 'τ' & 'L '	1	$\tau = \frac{d\mathbf{L}}{dt}$	For rotational eqilibrum τ=0
			12

Angular momentum	about a point: L = rpsinθ For arigid body L=Iω	PCos e
Conservation of Angular Momentum	$I_1\omega_1=I_2\;\omega_2$	Revolution of earth around sun
Impulse of Torque	$J = \int_0^{\Delta L} \tau dt = L_f - L_i$	-
Rotational K.E.	$K = \frac{1}{2} I \omega^2$	$ \begin{array}{c} m_0 = \frac{r_0}{r_1} \\ m_0 = \frac{r_0}{r_2} \\ m_0 = \frac{r_0}{r_0} \end{array} $
Total K.E.	$\frac{1}{2}Mv_{cm^2} + \frac{1}{2}I_{cm}\omega^2$	
Motion of a Body Rolling Down Without Slipping on an Inclined Plane	$a = \frac{mg\sin\theta}{m + \frac{I}{r^2}} = \frac{g\sin\theta}{1 + \frac{K^2}{r^2}}$ $v = \sqrt{\frac{2gh}{1 + \frac{K^2}{r^2}}}$ $Time = \sqrt{\frac{2s\left(1 + \frac{k^2}{r^2}\right)}{g\sin\theta}}$	$mg \sin \theta$ $mg \cos \theta$
Work done by torque	$W = \int_{\theta_1}^{\theta_2} \tau \ d\theta$	-
Power delivered by torque	$P = \tau \cdot \omega$	-
	CDAVITATION	

GRAVITATION

Universal Law of Gravitation	$\overrightarrow{F}_{12} = \frac{Gm_1m_2}{r^2} \overrightarrow{r}_{12} \overrightarrow{F}_{21} = \frac{Gm_1m_2}{r^2}$	$m_1 \xrightarrow{\hat{\Gamma}_{12}} \overrightarrow{F}_{12} \xrightarrow{\hat{F}_{21}} \hat{\Gamma}_{21} \xrightarrow{\hat{\Gamma}_{21}} m_2$
Gravitational Field	$E = \frac{F}{m} = \frac{GM}{r^2}$	Gravitational field on earth surface is acceleration due to gravity
Gravitational potential	$V = -\frac{GM}{r}$ $E = -\frac{dV}{dr}$	
Variation Of Acceleration Due To Gravity	Effect of Altitude When h is comparable to R $g_h = \frac{GM_e}{(R_e + h)^2}$ $g \left(1 - \frac{2h}{R_e}\right) \text{ when h } << R.$	B # g' h A g R O

Effect of depth $g_d = g \left(1 - \frac{d}{R_e} \right)$	
Effect of the surface of Earth $g_{pole} > g_{equator}$	North pole Re South pole
Effect of the Earth's rotation $g'=g-R\omega^2\cos^2\lambda$	O R F FC B
$v_0 = \left[\frac{GM_e}{(R_e + h)}\right]^{\frac{1}{2}}$ $h << R_e \text{ then } v_0 = \sqrt{gR_e}$	Minimum velocity to put an object in any circular orbit.
$v_e = \sqrt{\frac{2GM}{R}} = \sqrt{2gR}$	Minimum velocity to be imparted such that Kinetic energy of a body becomes equal to its potential energy.
$U = \frac{-GM_em}{r} K.E. = \frac{GM_em}{2r}$ $E = -\frac{GM_em}{2R_e}$ Binding Energy $BE = +\frac{GMm}{2r}$	Negative total energy indicates the satellite is bounded to the earth.
$U = -\frac{GMm}{r}$	Always negative as force is always attractive in nature.
Law of orbit: Every planet revolves around the sun in an elliptical orbit and sun is at its one focus.	Planet Parhelion or Perigee a Aphelion or Apogee
Law of area: Areal velocity = constant $\frac{dA}{dt} = \frac{L}{2m} = constant$ Law of periods: $\frac{T^2}{R^3} = constant$	
	Effect of the surface of Earth $g_{pole} > g_{equator}$ Effect of the Earth's rotation $g' = g - R\omega^2 \cos^2 \lambda$ $v_0 = \left[\frac{GM_e}{(R_e + h)}\right]^2$ $h << R_e \text{ then } v_0 = \sqrt{gR_e}$ $v_e = \sqrt{\frac{2GM}{R}} = \sqrt{2gR}$ $U = \frac{-GM_em}{r} \text{K.E.} = \frac{GM_em}{2r}$ $E = -\frac{GM_em}{2R_e}$ Binding Energy BE = $+\frac{GM_em}{2r}$ $U = -\frac{GMm}{r}$ Law of orbit: Every planet revolves around the sun in an elliptical orbit and sun is at its one focus. Law of area: Areal velocity = constant $\frac{dA}{dt} - \frac{L}{2m} = constant$ Law of periods: $T^2 = constant$

PROPERTIES OF MATTER

Stress	restoringforce	The magnitude of restoring force is
	area of the body	taken equal to that of applied force.

Strain		nge in configuration ginal configuration	
	Longitud inal strain		al 🕽
	Volume strain	$\frac{\Delta V}{V}$	
	Shear Strain	$\phi = \frac{x}{\ell}$	
Hooke's Law	S	tress ∝ Strain	Hooke's law is valid within elastic limit.
Elastic Modulus	Young's modulus $Y = \frac{F/A}{\Delta L/L} \qquad K = -\frac{FV}{A\Delta V}$ Modulus of Rigidity/Shear Modulus) $\eta = \frac{F}{A \ \theta}$		_
Poisson's Ratio	$\frac{\text{Lateral strain}}{\text{Longitudinal strain}} = \frac{-\Delta R/R}{\Delta l/l}$		
Compressibility	$\frac{1}{K}$		K-bulk modulus
Force Constant of Wire	$k = \frac{YA}{l}$		If a spring is cut two equal parts then effective spring constant of each part will be 2k as k is inversely proportional to its length.
Potential Energy per unit volume	$\frac{1}{2}$ (stress × strain)		-
Thermal stress	$Y\alpha\Delta\theta$ Y-young's modulus α -coefficient of linear expansion $\Delta\theta$ -change in temperature		F dd

		`
Pressure Exerted by the Liquid	P=hρg	
Hydrostatic Paradox	$p_x = p_y = p_z = p_0 + \rho g h$ $w_x \neq w_y \neq w_z$	
Liquid placed in elevator	$p = \rho h [g + a_0]$	a₀ ↑
Free surface of liquid in horizontal acceleration	$\tan \theta = \frac{a_0}{g}$ $h_1 - h_2 = \frac{\ell a_0}{g}$	$-\frac{h_1}{1} - \frac{h_2}{2} \xrightarrow{0.2} \longrightarrow a_0$
Free surface of liquid in case of rotating cylinder	$h = \frac{v^2}{2g} = \frac{\omega^2 r^2}{2g}$	A C S S S S S S S S S S S S S S S S S S
Equation of Continuity	$a_1v_1 = a_2v_2$	v_1 a_1 a_2 v_2
Bernoulli's Theorem	$p+rac{1}{2} ho v^2+ ho gh={ m constant}$ p-pressure v-speed of liquid h-height	P ₁ a ₁ (1)
Torricelli's theorem – (speed of efflux)	$\upsilon = \sqrt{2gh}$ $t = \sqrt{\frac{2(H-h)}{g}}$ $S = \sqrt{4h(H-h)}$	

Venturimeter	$v = a_1 a_2 \sqrt{\frac{2gh}{a_1^2 - a_2^2}}$	X V
Newton's Law of viscosity	$F = - \eta A \frac{dv}{dx}$	dx v + dv v - dv
Stoke's Law	F = 6 πη r v	Applicable for spherical objects falling through a viscous medium. η-coefficient of viscosity r-radius of the ball ν-speed of the object
Terminal velocity	$\frac{2}{9} \frac{r^2(\rho - \sigma)g}{\eta}$	V (m.z ⁻¹) Terminal velocity 20 10 0 10 20 30 40 50 t (a)
Reynold's Number	$\frac{v_c \rho r}{\eta}$	R<2000 – streamlined flow When 2000 < R< 3000, the flow is variable between streamlined and turbulent. K > 3000 turbulent flow
Relative density	Density of substance Density of water at 4°C	Weight of substance in air Loss of weight in water
Laws of Floatation	 (a) If W> w, then body will sink to the bottom of the liquid. (b) If W < w, then body will float partially submerged in the liquid. (c) If W = w, then body will float in liquid if its whole volume is just immersed in the liquid. 	W=weight of the body w= weight of displaced water
Poiseuille's Formula(rate of flow)	$\frac{\pi}{8} \frac{pr^4}{\eta l}$	p-pressure difference r-radius of the tube η-coefficient of viscosity I-length of the tube.
Surface tension	Total force on either of the imaginary lin Length of the line (1) Surface energy or work done Increase surface area	

	Thin ring of radius r $F = 2\pi (r + r) \cdot S$	F↑ O•r
	Circular plate or disc of radius r $F = 2\pi r \cdot S$	Liquid is only in contact with circumference of the disc.
Force of Surface Tension on Different Shape	Square frame of side a $F = 8a \cdot S$	
	Square plate of side a $F = 4aS$	
	Hollow disc of inner radius r1 and outer radius r2 $F = 2\pi (r_1 + r_2) \cdot S$	F L
	Wire of length I $F = 2 \cdot I \cdot S$	0 0
Work Done in Blowing a Liquid Drop	$W=S\cdot 4\pi(r_2^2-r_1^2)$	S=surface tension $r_1 = initial radius$ $r_2 = final radius$
Work Done in Blowing a Soap Bubble.	$W = S \cdot 8\pi (r_2^2 - r_1^2)$	S=surface tension r₁ =initial radius r₂= final radius
Work Done in Splitting a Bigger Drop into n Smaller Droplets	$r = R \cdot (n)^{-1/3}$ $W = 4\pi S(nr^2 - R^2)$ $= 4\pi SR^2 (n^{1/3} - 1)$	S=surface tension R ₌initial radius r= final radius
Coalescence of Drops	$R = n^{1/3} \cdot r$, $\Delta U = S \cdot 4\pi (nr^2 - R^2)$ $= 4\pi Sr^2 n (1 - n^{-1/3})$	S=surface tension r ₌initial radius R= final radius
Excess pressure	Inside a bubble $\frac{4S}{R}$ Inside the drop $\frac{2S}{R}$	dt Sdt B O D

	Inside air bubble in $\dfrac{2S}{R}$	a liquid	
Radius r of common interface	$\frac{1}{r} = \frac{1}{r_1} - \frac{1}{r_2}$		0.1
Capillary Rise	$h = \frac{2S\cos\theta}{r\rho g}$ If a glass of insufficient ler in water then water rises t changes its radius of curva (water does not over $R_1h_1 = R_2h_1$	ngth is dipped ill the top and ture such that erflow)	P. E. F.
Variation in angle of contact	Angle of Contact < 90° Contact = 90° Meniscus shape-Concave Plane • Capillary action - Liquid rises • Stick/wet S Contact = 90° No effect of the state of the st	Angle of Contact >90° Meniscus shape- Convex Capillary action- Liquid falls Does not wet For English	Glass Water A R M C

THERMAL PROPERTIES OF MATTER

Temperature scales	$\frac{C}{100} = \frac{F - 32}{180} = \frac{K - 273}{100}$	C, F and K are respectively temperatures a in Celsius, Fahrenheit and Kelvin scale
Linear Expansion	$l_2 = l_1 \; (1 + \alpha \; \Delta t)$	α =coefficient of linear expansion. Δ t= change in temperature.
Variation of time period of pendulum	$\Delta T = \frac{1}{2} \alpha \Delta \theta T$	T' < T - clock-fast : time-gain T' > T - clock slow : time-loss
Superficial Expansion	$A_2 = A_1 \left(1 + \beta \Delta t \right)$	β =coefficient of superficial expansion. Δ t= change in temperature.
Volume expansion	$V_2 = V_1 \; (1 + \gamma \; \Delta t)$	γ =coefficient of superficial expansion. Δ t= change in temperature. $\alpha:\beta:\gamma=1:2:3$
Expansion of Liquids	Coefficient of Apparent expansion $\gamma_a = \frac{\text{Apparent Increase in volume}}{\text{original volume* original volume}}$ Coefficient of real expansion $\gamma_r = \frac{\text{Rea Increase in volume}}{\text{original volume* original volume}}$	$\gamma_r = \gamma_a + \gamma_g$

Stefan Boltzmann law	Rate of heat loss= $\mathbf{e} \ \sigma \mathbf{A} \ (\mathbf{T}^4 - \mathbf{T}_0^4)$	T-temperature of the body T ₀ -temperture of the body
Wein's Displacement law	λ_m . $T = b$ λ_m -the wavelength at which maximum emission takes place T- absolute temperature of the body	Englishes tehendig
Emissivity	e=E of a body at T temp. E of a black body at T temp.	nor transmits. Only can emit radiations at some higher temperature.
Emissive power	$E = \frac{\Delta U}{\Delta A \Delta t}$	A black body is a body which absorbs 100% incident energy neither reflects
combination of rod	Parallel $K_{eq} A_{eq} = K_1 A_1 + K_2 A_2 + \dots$	When $I_1 = I_2 = I_3 =$
Series and parallel	Series $\frac{\ell_{\text{eq}}}{\kappa} = \frac{\ell_1}{\kappa} + \frac{\ell_2}{\kappa} + \dots$	When $A_1 = A_2 = A_3 =$
Thermal Resistance	$R = \frac{\ell}{KA}$	Electric resistance $R = \rho \frac{l}{A}$
Thermal Conduction	$\frac{dQ}{dt} = -KA \frac{dT}{dx}$	T_1 K T_2 K T_3 K T_4 K T_4
Water equivalent	$\frac{m.s}{s_w}$	m _w =water equivalent S _w =sp. Heat of water
Latent heat	Q=mL	Heat required to change the phase of a substance at a constant temperature.
Molar specific heat	$C = \frac{\Delta Q}{n \Delta T}$	Process dependent quantity for gases.
Specific heat	$S = \frac{Q}{m.\Delta T}$	Depends on nature of the substances.
Variation of Density with Temperature	$\rho' \approx \rho(1 - \gamma \Delta T)$	γ =coefficient of superficial expansion. Δ t= change in temperature

KTG & THERMODYNAMICS

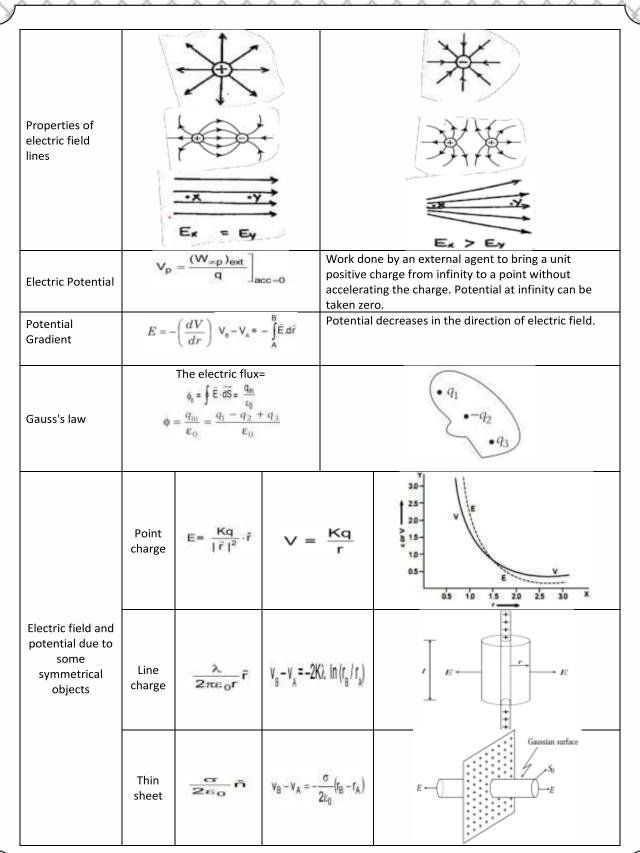
Pressure of a gas	$P = \frac{1}{3} \rho V_{rms}^2$	
Speed of gas molecules	$V_{mns} = \sqrt{\frac{3P}{\rho}}$ $= \sqrt{\frac{3KT}{m}}$ $\overline{V} = \sqrt{\frac{8KT}{\pi m}}$ $V_{p} = \sqrt{\frac{2KT}{m}}$	V _{rms} >
Maxwell's law of	Total K.E. of the molecule = 1/2 f KT	f=degrees of freedom

equipartition of energy					on of K=Boltzman constant T=absolute temperature.		
Internal energy of n moles gas		$U = \frac{f}{2}$	nRT				
Ratio of C _p and C _v	Gas	Degree freedo		$=\frac{f}{2}RT$	$C_V = \frac{dU}{dT} = \frac{dU}{dT}$	$C_p = C_V + R$	$\gamma = \frac{C_p}{C_V} = 1 + \frac{2}{f}$
	Monoatom	ic 3 (trar	ns) 3	RT	$\frac{3}{2}R$	$\frac{5}{2}R$	1.67
	Diatomic &Triatomi (linear)	I 3/trans	_	2 RT	$\frac{5}{2}R$	$\frac{7}{2}R$	1.4
	Triatomic (n linear)	on 3(trans (rot)	-	3RT	3R	4 <i>R</i>	1.33
Mean Free Path		$\lambda = \frac{1}{\sqrt{2}}$	$\frac{kT}{\pi \sigma^2 p}$		T-absolute σ- diamete p-pressure k-Boltzmar	r	
Mayer's equation		Cp — Cv = R			pressure	pecific heat at	
Work Done	$\int_{V_i}^{V_f} p dV = ext{Area} ABCDA$			Pressure (p)	lume (V)		
First Law of Thermodynamics	dQ = dU + dW			the word pos exp	conservation of rmodynamics. kdone(dw)- is itive when the ands and nega s compressed.	taken gas	
	Process	Process Work done Change in heat internal energy		Pressure 1	lsobaric	-	
Thermodynamic	Isobaric	$nR(T_r - T_i)$	nC _V ΔT	Cp			
processes	Isochoric	Zero	Heat supplied	C _v			
	Adiabatic	$\frac{nR(T_i - T_f)}{\gamma - 1}$	-	Zero		sometric	
	Isothermal	$nRT \log_{10} \frac{V_f}{V_i}$	Zero	Infinity			Works
Adiabatic relations	$pV^{\gamma} = T$	$TV^{\gamma-1} = \frac{1}{p}$	$\frac{T^{\gamma}}{\gamma - 1} = \text{Cor}$	stant			
Ndiviture of	Mol.		C _v			γ	
Mixture of non- reacting gases	$\frac{n_1M_1 + n_2M_2}{n_1 + n_2}$		$\frac{n_1C_{v_1} + n_1}{n_1 + n_2}$		$\frac{n_1C_{p_1} + n_2C_{p_2} +}{n_1C_{v_1} + n_2C_{v_2} +}$		

SIMPLE HARMONIC MOTION

		T	CHAA
S.H.M.	F	= - kx	SHM occurs when the body is in stable equilibrium only.
Displacement in SHM	pc Y=a cosωt(body start pc v	earts vibrating from mean osition) ts vibrating from extreme osition) where $\frac{2\pi}{T} = 2\pi f$	Y (19) Y (19) X a O a X O T/4 T/2 17/4 T (8)
Speed	V = ω	$\sqrt{A^2-x^2}$	+Aw +Aw +t
Acceleration	a =	$-\omega^2 x$	+ω²A † a → t
Energy in SHM		Potential Energy 2 Kײ hanical Energy KA²	E = KE + PE (Total energy) Potential energy Kinetic energy ← Displacement →
	Т =	$2\pi\sqrt{\frac{m}{k}}$	00000000000 m
	$T = 2\pi \sqrt{\frac{m}{k}}$		3 1000000000
SPRING-Block SYSTEM	$T = 2\pi \sqrt{\frac{\mu}{K}} \mu = \frac{m_1 m_2}{(m_1 + m_2)}$		m. 0000000000 m.
	VASTA 300	Combination $1/k_1 + 1/k_2$	K1 WW K2 K2 K2
		combination $k_1 + k_2$	10000 k ₁
SIMPLE PENDULUM	$T = 2\pi \sqrt{\frac{l}{g}}$	In a horizontally accelerated vehicle $T = 2\pi \sqrt{\frac{l}{\sqrt{(\alpha^2 + g^2)}}}$	Oscillates in uniform electric field(acting upwards)

	Oscillates in a fluid $T' = 2\pi \sqrt{\frac{\rho l}{(\rho - \rho_0)g}}$	In a vehicle sliding down an inclined plane $T = 2\pi \sqrt{\frac{l}{g\cos\theta}}$	$T = 2\pi \sqrt{\frac{l}{g - \frac{qE}{m}}}$
COMPOUND PENDULUM / PHYSICAL PENDULUM		$\frac{1}{mg\ell} + m\ell^2$ center of mass and point spension	$mg \sin \theta$ $mg \cos \theta$
TORSIONAL PENDULUM	T =	$2\pi\sqrt{\frac{1}{C}}$	C=torsional constant


WAVES

	WAVES	
Speed of sound	$ \sqrt{\frac{\gamma P}{P}} = \frac{\sqrt{BRT}}{\sqrt{M}} $	M= Molar mass
Speed of Transverse wave	$\sqrt{\frac{T}{\mu}}$	T=tension μ=mass per unit length
Simple Harmonic Wave eqn.	$y = a \sin \frac{2\pi}{\lambda} (vt - x)$	 Waves travelling along negative X axis=sign of x and t are same Waves travelling along positive X axis=sign of x and t are opposite
Wave velocity & Angular wave number	$\frac{\mathbf{\omega}}{\mathbf{k}} = \frac{2\pi}{\lambda}$ $V_{p} = -V_{wave} \frac{dy}{dx}$	ω =angular frequency k=propagation constant/angular wave number
Particle velocity	$V_p = -V_{wave} \frac{dy}{dx}$	Max particle velocity (at mean position)=ωA Min particle velocity(at extreme position)=zero
	$\Delta \phi = \frac{2\pi}{\lambda} \Delta x$	At a particular time between particle at different position
Variation of phase	$\Delta \phi = \frac{2\pi}{T} \Delta t$	For a particular particle (at a fixed position) between a time interval
Intensity	$I = \frac{1}{2}\rho\omega^2 A^2 V$	p= volume mass density ω=angular frequency A=amplitude V=volume
Reflection & refraction of Wave	$y_t = A_t \sin (\omega t - k_1 x)$ Rarer to denser $y_t = A_t \sin (\omega t - k_2 x)$ $y_r = -A_r \sin (\omega t + k_1 x)$ Denser to rarer $y_t = A_t \sin (\omega t - k_2 x)$ $y_r = A_r \sin (\omega t + k_1 x)$	$A_{r} = \frac{ k_{1} - k_{2} }{k_{1} + k_{2}} A_{i}$ $A_{t} = \frac{2k_{1}}{k_{1} + k_{2}} A_{i}$
Stationary or Standing Waves eqn.	$y = 2a \sin \frac{2\pi t}{T} \cos \frac{2\pi x}{\lambda}$	 Distance between two successive nodes and antinodes=^λ/₂ Distance between one node and next antinode = ^λ/₄ In a loop particles vibrate in same phase but with different amplitudes

	1 st mode (1 st harmonic or fundamental)	
Vibrations of strings fixed at both ends & open organ pipe	2 nd mode (2 nd harmonic or first overtone)	
	3 rd mode(3 rd harmonic or 2 nd overtone)	L =
String free at one end & close organ pipe	1 st mode(1 st harmonic or fundamental)	L = 1
	2 nd mode(3 rd harmonic or first overtone)	L =
Resonance Tube	$v = n\lambda = 2n \ (l_2 - l_1)$	$ \begin{array}{c cccc} \uparrow & & & \uparrow & & \\ \lambda/4 & & & \uparrow & & \\ \downarrow & & & \downarrow & & \\ N & & & \downarrow & & \\ \downarrow & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & \downarrow & \\ N & & & & & & \\ N & & & & & \downarrow & \\ N & & & & & & & & & \\ N & & & & \\$
Beat frequency	Number of beats heard per second = n_1 - n_2 = difference of frequencies	Beats are heared when the frequency difference is not more than 10 Hz.
L	ELECTROSTA	•

ELECTROSTATICS

Coulomb force	$F_e = \frac{K q_1q_2 }{r^2}$	F_{12} $\downarrow q_1$ $\downarrow r$
Dielectric constant or relative permittivity	$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0} \overrightarrow{E} = \frac{\overrightarrow{E}_0}{K}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Electric field	E= <u>F</u>	Force per unit test charge.
intensity	q	q=test charge

/				
	Charge d ring	$E_{axis} = \frac{KOx}{(R^2 + x^2)^{3/2}}$	$V_{axis} = \frac{KQ}{\sqrt{R^2 + x^2}}$	A dQ a P dEcose dE
	Conduc ting sheet	ە î	$v_B - v_A = -\frac{\sigma}{\epsilon_0} (r_B - r_A)$	A P E
	Hollow conduc ting/ non-conduc ting	$\vec{E} = \frac{kQ}{ \vec{r} ^2}\hat{r}$	$V = \frac{KQ}{r}$	$E \Rightarrow \frac{\sigma}{\varepsilon_0}$ $E = 0$ $E \approx \frac{1}{r^2}$ R
	/solid conduc ting sphere	$\vec{E} = 0$	$V = \frac{KQ}{R}$	$V \propto \frac{1}{r}$ $V \propto \frac{1}{r}$
Electrostatic potential energy		$U = \frac{1}{4\pi \varepsilon_0}$	$\frac{q_1q_2}{r}$	Negative for opposite charges and positive for similarcharges.
Energy Density		1/2 εΕ		E=Electric field due to any configuration.
Dipole	Axial point	$\vec{E} = \frac{2K\vec{P}}{r^3}$	$V = \frac{1}{4\pi \varepsilon_0} \frac{p}{r^2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Equtorial point	$\vec{E} = -\frac{K\vec{P}}{r^3}$	Zero	E O O O B B H Za Za H
	General point	$E_{ms} = \frac{KP}{r^3} \sqrt{1 + 3\cos\theta}$	$V = \frac{P\cos\theta}{4\pi\epsilon_0 r^2}$	A B B A B A B A B A B A B A B A B A B A
	Potential Energy	U :	= - p̄.Ē	Dipole placed in the direction of electric field=P.E becomes minimum=stable equilibrium Dipole placed in opposite direction of electric field=P.E becomes maximum=stable equilibrium

Torqu	$\vec{\tau} = \vec{p} \times \vec{E}$	2d /p E -F ← -Q
Capacitance	$C = \frac{q}{V}$	C is independent of charge and voltage.
Energy stored	$C = \frac{q}{V}$ $U = \frac{1}{2} CV^2 = \frac{Q^2}{2C} = \frac{QV}{2}$	During charging a capacitor half of the supplied energy is dissipated as heat.
Parallel plate capacitor	$C=rac{KA \epsilon_0}{d}$ K- dielectric constant of the material	10 Id
Force experienced by any plate	$F = \frac{Q^2}{2A \varepsilon_0}$	$ \begin{array}{c c} & \bullet & \bullet \\ & \times & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet & \bullet \\ & \bullet & \bullet & \bullet \\ \end{array} $
Capacitance of an Isolated Spherical Conductor	C=4πε ₀ R	R-radius of the conductor
Capacitor with dielectric	$C = \frac{A\varepsilon_0}{\left(d - t + \frac{t}{K}\right)}$ Bound charge= $Q_p = Q\left(1 - \frac{1}{K}\right)$	Q -Q _p
Capacitor with metal sheet	$C = \frac{A \varepsilon_0}{(d-t)}$	t=thickness of metalsheet d= separation between the plates A=area of crossection of the plates
Series Combination	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ $V_1 : V_2 : V_3 = \frac{1}{C_1} : \frac{1}{C_2} : \frac{1}{C_3}$ $V = V_1 + V_2 + V_3 + \dots$	C, V, C ₂ V ₂ C ₃ V ₃
Parallel Combination	$V = V_1 + V_2 + V_3 + \dots$ $C_{eq} = C_1 + C_2 + C_3$ $Q_1: Q_2: Q_3 = C_1: C_2: C_3$ $q = q_1 + q_2 + q_3 + \dots$	
Charges on connecting two charged capacitors	$V = \frac{C_1V_1 + C_2V_2}{C_1 + C_2}$ $Q_1' = C_1V = \frac{C_1}{C_1 + C_2}(Q_1 + Q_2)$ $Q_2' = C_2V = \frac{C_2}{C_1 + C_2}(Q_1 + Q_2)$	Heat loss= $\Delta H = U_1 - U_r$ $= \frac{1}{2} \frac{C_1 C_2}{C_1 + C_2} (V_1 - V_2)^2$

CURRENT ELECTRICITY

	CURRE	NT ELECTRICITY	
Electric current&Current Density	$i = \lim_{M \to 0} \frac{1}{\Delta}$ $j = \frac{1}{\Delta}$	$\frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$ $\frac{\Delta i}{S \cos \theta}$	ΔQ ΔQ ΔR ΔS ΔS ΔS R
Electric current in a conductor	$I = neAV_d$	$(J) = \frac{I}{A} = nev_d$	
Drift Velocity& mobility	$v_d = \frac{eE\tau}{m} = \frac{eV\tau}{ml}$	500 to 1000	$ \begin{array}{c c} & \longrightarrow & E & \downarrow \\ & V_d \longleftarrow & \downarrow \\ & \longrightarrow & V_d \Delta t \longrightarrow \end{array} $
Ohm's Law		$=IR$ $\frac{ml}{Ane^2 au}$	Resistance is the property of a conductor it depends on length, area of cross-section, temperature of the conductor. Resistivity is the property of the material of a conductor. It depends on temperature of the material.
Dependence of Resistance on Temperature	$R = R_o$	$(1 + \alpha \theta)$	Y Onmai netal
Resistances in Series	$R = R_1 +$	$R_2 + R_3$	R ₁ R ₂ R ₃ A•──WWW-──WWW-──₩
Resistances in Parallel	$\frac{1}{R} = \frac{1}{R_1} +$	$+\frac{1}{R_2}+\frac{1}{R_3}$	R ₁
Kirchhoff's laws		Law (Junction law)	Based on Conservation of charge.
MICHIOII 5 IAWS	Kirchhoff's Volta Σ IR $+$ Σ	ge Law (Loop law) EMF =0	Based on Conservation of energy.
Wheatstone network	$rac{P}{Q}$:	$=\frac{R}{S}$	P _L t _L O t _L O C C C C C C C C C C C C C C C C C C C
EMF, Terminal voltage & internal resistance		circuit - ,I=0	

Discharging circuit E=V _T +Ir	A C B
Charging circuit E=V _T -Ir	A C B
$E_{eq} = E_1 + E_2 + \dots + E_n$ $r_{eq} = r_1 + r_2 + r_3$	$\begin{array}{c c} & \varepsilon_1 & & \varepsilon_2 & & b \\ \hline & & & & & & \\ i & & & & & & \\ R & & & & & & \\ \end{array}$
$ E_{eq} = \frac{\frac{\epsilon_{1}}{r_{1}} + \frac{\epsilon_{2}}{r_{2}} + \dots + \frac{\epsilon_{n}}{r_{n}}}{\frac{1}{r_{n}} + \frac{1}{r_{2}} + \dots + \frac{1}{r_{n}}} $ $ \frac{1}{r_{eq}} = \frac{1}{r_{1}} + \frac{1}{r_{2}} + \dots $	
$I = \frac{mne}{mR + nr}$ Current in this circuit will be maximum when external resistance is equal to the equivalent internal resistance, $R = \frac{nr}{m}$	
$P=VI$ $P = I^{2}R$ $= \frac{V^{2}}{R}$ $H = VIt = I^{2}Rt$	H=Pt H=heat dissipated I=current V=voltage R=resistance T=time
	Charging circuit $E=V_{T}-Ir$ $E_{eq}=E_{1}+E_{2}++E_{\Pi}$ $\Gamma_{eq}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ $E_{eq}=\frac{\frac{e_{1}}{I_{1}}+\frac{e_{2}}{I_{2}}++\frac{e_{n}}{I_{n}}}{\frac{1}{I_{n}}+\frac{1}{I_{2}}++\frac{1}{I_{n}}}$ $\frac{1}{I_{eq}}=\frac{1}{I_{1}}+\frac{1}{I_{2}}+$ Current in this circuit will be maximum when external resistance is equal to the equivalent internal resistance, $R=\frac{nr}{m}$ $P=VI$ $P=VI$ $P=I^{2}R$ $-\frac{V^{2}}{R}$

MAGNETIC EFFECT OF CURRENT

Biot-savart's Law	$\overrightarrow{dB} = \frac{\mu_0 I}{4\pi} \cdot \left(\frac{\overrightarrow{d\ell} \times \overrightarrow{r}}{r^3} \right)$	a) Derranda
Magnetic field due to a moving point charge	$\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{q(\vec{v} \times \vec{r})}{r^3}$	-
Magnetic field due to a straight wire	$B = \frac{\mu_0}{4\pi} \frac{1}{r} (\sin \theta_1 + \sin \theta_2)$	$\ell \sim \frac{\theta_1}{r \theta_2} (:: P$
Magnetic field due to infinite straight wire	$B = \frac{\mu_0}{2\pi} \frac{1}{r}$	° г.•Р

Magnetic field at the centre of a circular loop	$B = \frac{\mu_0 NI}{2r}$	1
Ampere's Law	$\oint \vec{B}.\vec{d\ell} = \mu_0 I$	(OI)
Magnetic Field Due to a Current Carrying Long Circular Cylindrical Wire	Outside the wire $B = \frac{\mu_0}{2\pi} \frac{I}{r}$ Inside the wire $B = \frac{\mu_0}{2\pi} \frac{Ir}{R^2}$	$B \xrightarrow{B \times \frac{1}{r}}$
Solenoid	$B = \mu_0 nI$	
Magnetic force acting on a moving point charge	$\vec{F} = q(\vec{v} \times \vec{B})$ $r = \frac{mv}{qB}$ $T = \frac{2\pi m}{qB}$	* * * * * * * * * * * * * * * * * * *
Lorentz force and motion of chargedparticle	$\overrightarrow{F} = \overrightarrow{qv} \times \overrightarrow{B}.$ $r = \frac{mv}{qB}$ $T = \frac{2\pi r}{v} = \frac{2\pi m}{qB}$	× × × × × × × × × × × × × × × × × × ×
Magnetic force acting on a current carrying wire	$\vec{F} = \vec{I} \Big(\vec{\ell} \times \vec{B} \Big)$	V ₀ Gl
Force between two long parallel.	$F = \frac{\mu_0}{2\pi} \cdot \frac{I_1 I_2}{r} l$	W₁ W₂ dt w₂
Magnetic field due to a coil	At an axial pont: $\frac{\mu_0 ia^2}{2(a^2+d^2)^{3/2}}$	M d d d d d d d d d d d d d d d d d d d

Torque acting on a loop	$\vec{\tau} = \vec{M} \times \vec{B}$	OB OFFI OF
Solenoid	$B = \mu_0 \ ni$	
	Axial point Equatorial line $B = \frac{\mu_0}{4\pi} \cdot \frac{2M}{r^3}$ $B = \frac{\mu_0}{4\pi} \cdot \frac{M}{r^3}$	-S N- B _S P B _N
Magnetic field due to a bar magnet	At a general point $B = \frac{\mu_0}{4\pi} \frac{M}{r^3} \sqrt{1 + 3\cos^2 \theta}$	B _B B _B D D D D D D D D D D D D D
Moving Coil Galvanometer	$NBIA = k\theta$ $Current$ $sensetivity$ $\frac{\theta}{I} = \frac{NBA}{k}$ $Voltage$ $sensetevity$ $\frac{\theta}{V} = \frac{NBA}{kr}$	N S
Conversion of galvanometer	Into a ammeter(connecting a small resistance in parallel with the galvanometer) $I_{\mathbf{g}} \times G = (I - I_{\mathbf{g}}) \times S$ Into a voltmeter(connecting a high resistance in series with the galvanometer) $V = I_{\mathbf{g}} \cdot (G + R)$	A Ig G WWW B
Bar magnet	Cut into two equal pieces such that the length of each piece becomes half $M' = m \cdot \frac{2I}{2} = \frac{M}{2}$ cut into two equal pieces such that the width of each piece becomes half $M' = \left(\frac{m}{2}\right)(2I) = \frac{M}{2}$	Pole strength is directly proportional to area of cross sectionof the bar magnet.

ar magnet is bent in the form of semi-circle $M' = m(2r)[\because 2I = \pi r]$ $M' = m \times 2\left(\frac{2I}{\pi}\right) = \frac{2M}{\pi}$ $M = \frac{evr}{2}$ $M = -\left(\frac{e}{2m_e}\right)L$ $M = n\frac{eh}{4\pi m}$	2r + m•
$\mathbf{M} = -\left(\frac{e}{2m_e}\right)\mathbf{L}$ $M = n\frac{eh}{2m_e}$	
	▼ M
$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{MB}}$	mB B B
$(\mathbf{I}) = \frac{\mathbf{M}}{V} = \frac{m}{A}$	Ferromagnetic
it suceptibility and permeabilty	Diamagnetic
(ep Relation between succeptibility and permeability

ELECTROMAGNETIC INDUCTION

Magnetic flux	$\phi = \mathbf{B} \cdot \mathbf{A} = BA \cos \theta$	
Gauss's Law in Magnetism	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	B=magnetic field. S =area vector • Monopoles do not exis.
Faraday's law	$e = -\frac{d\phi}{dt}$	Induced charge is independent of time
Induced emf due to rotation	$e = \frac{1}{2} B\omega l^2$	x x x x x x x x x x x x x x x x x x x
Motional Emf	e = Bvl	
Self-inductance of a long solenoid	$ \phi = Li $ $ L = \frac{\mu_0 N^2 A}{l} = \mu_0 n^2 Al $	Self-inductance is called electrical inertia.

Mutual Inductance	$M = rac{\mu_0 N_1 N_2 A}{l} = \mu_0 n_1 n_2 A l$ = $\mu_0 n_1 n_2 \pi r_1^2 l$	N, turns	
LC Oscillations	$ω^2 = \frac{1}{LC}$ ω=angular frequency of the LC oscillation		
ALTERNATING CURRENT			

ALTERNATING CURRENT			
Mean and rms value	$I_m = \frac{2I_0}{\pi} \; I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	$\overline{i}^{2} = \frac{\int_{0}^{T} i^{2} dt}{\int_{0}^{T} dt}$ $i_{rms} = \sqrt{\overline{i}^{2}}$	
Power in AC	$V_{rms} I_{rms} \cos \phi$.	Cos φ is called Power factor	
Purely resistive Circuit	= $I_m \sin \omega t$ <p> = $V_{ms}I_{ms}\cos \phi$</p>	Z=R φ=0	
Purely capacitivecircuit	$I = \frac{V_{m}}{1_{\omega C}} \cos \omega t$ $\langle P \rangle = V_{ms} I_{ms} \cos \phi = 0$	$ \begin{array}{c} $	
Purely inductive Circuit	$I = I_0 \sin(\omega t - \pi/2)$ $< P > = V_{\text{rms}} I_{\text{rms}} \cos \phi = 0$	$ \begin{array}{ccc} $	
Series LCR	$I = I_0 \sin (\omega t \pm \phi)$ $V = \sqrt{V_R^2 + (V_L - V_C)^2}$ $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $\cos \Theta = \frac{R}{Z}$	$V_L - V_C$ A A A A A A A	

/		
	At resonance, $X_L=X_C$ Resonance frequency $f=rac{1}{2\pi\sqrt{LC}}$	$Z_{min} = R$ $\downarrow f_0 f \longrightarrow$
		I _{max}
AC Generator	$e = NBA\omega \sin \omega t$	
Transformer	Transformation ratio $rac{N_S}{N_P} = rac{E_S}{E_P} = rac{I_P}{I_S}$	Primary coil Sore Secondary coil
	FLECTRONA & CNIETIC I	\A\\FC

ELECTROMAGNETIC WAVES

·	NOW THE PARTY OF T	
Displacement Current	$I_D = \varepsilon_0 \cdot \frac{d\phi_E}{dt}$	When displacement current is taken then conduction current becomes zero and vice versa.
Maxwell's Equations	$\oint_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{q}{\varepsilon_{0}}$	Gauss's law in electrostatics
	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	Gauss's law in magnetism
	$\oint_{S} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\phi_{\mathbf{B}}}{dt}$	Faraday's law
	$ \oint \mathbf{B} \cdot d\mathbf{I} = \mu_0 \left(I_C + I_D \right) $	Modified Amperes law
Electromagnetic Waves	EM wave propagating along positive X axis: $E = E_0 \sin \omega \left(t - \frac{x}{c} \right)$ $B = B_0 \sin \omega \left(t - \frac{x}{c} \right)$ $C = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$ $C = \frac{E_0}{B_0}$ $V \text{ Poynting vector:}$ (Direction of EM wave propagation) $S = \frac{1}{\mu_0} \left(\mathbf{E} \times \mathbf{B} \right)$ $V \text{ Intensity:}$	Population of EM wavepropagation ✓ Energy is equally shared between electric and magnetic fields. ✓ Average energy

$I = \langle u \rangle c$ $= \frac{1}{2} \varepsilon_0 E_0^2 c$
✓ Linear momentum
$p=rac{U}{c}$

✓ Magnitude of the total momentum delivered:(complete absorption)
 ✓ Magnitude of the total momentum

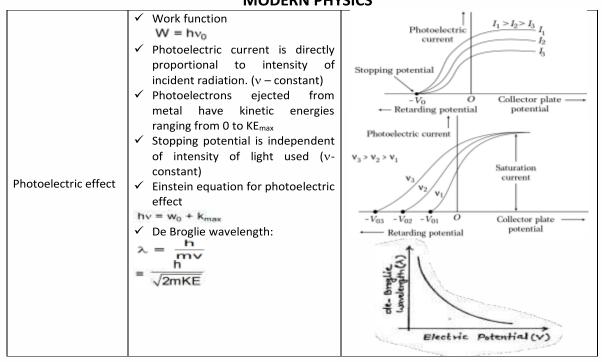
delivered:(complete absorption) $p = \frac{2U}{C}$

density= $\langle u_E \rangle = \langle u_B \rangle = \frac{1}{4} \epsilon_0 E_0^2$

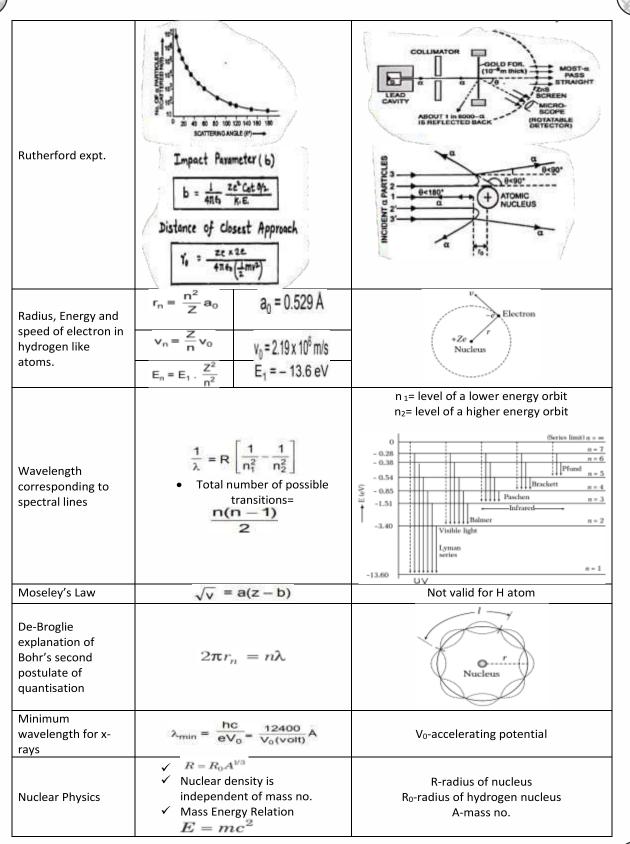
✓ Total energy density=<u>>= $\frac{1}{2}$ ϵ_0 E $_0$ ²

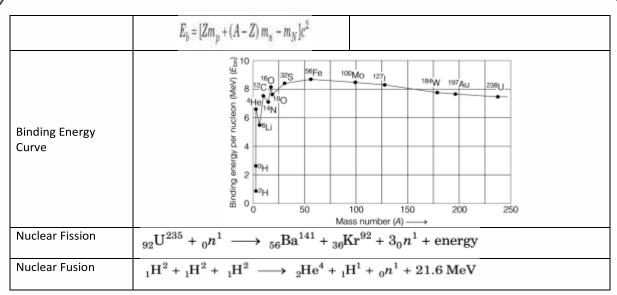
✓ U=<u>.volume

GEOMETRICAL OPTICS

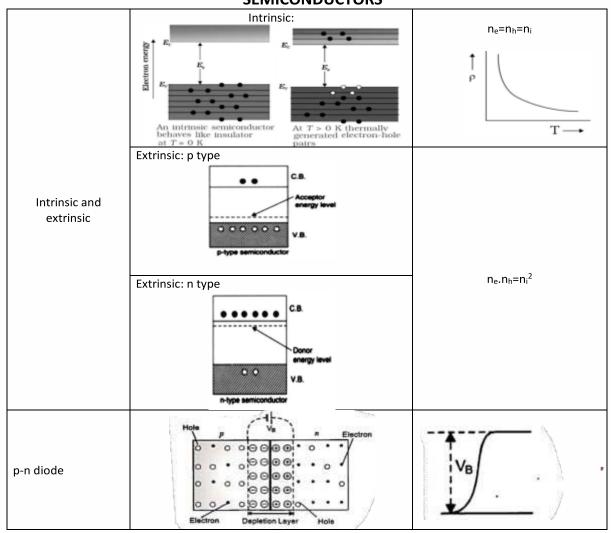

	GEOWIETRICAL OPTICS				
Spherical Mirror	$\frac{1}{v} + \frac{1}{u} = \frac{2}{R} = \frac{1}{f}$ $m = \frac{h_2}{h_1}$ $m = -\frac{v}{u}$ Image and object speed $\frac{dv}{dt} = -\frac{v^2}{u^2} \frac{du}{dt}$	$ \begin{array}{c c} C & I & F \\ \hline R & V \end{array} $			
Snell's Law	Refracted index= $\frac{c}{v}$ $\frac{\sin i}{\sin r} = \frac{n_2}{n_1}$	$\frac{n_2}{n_1}$ = refractive index of medium 2 w.r.t. medium 1			
Principle of Reversibility of Light Rays	A ray travelling along the path of the reflected ray is reflected along the path of the incident ray. A refracted ray reversed to travel back along its path will get refracted along the path of the incident ray	rarer medium denser medium mirror			
Apparent Depth	$d' = \frac{d}{\mu}$	Air Medium (Glass, water, etc.)			
Critical Angle and Total Internal Reflection	(a) Light is incident on the interface from denser medium. (b) Angle of incidence should be greater than the critical angle	Denser medium			
Refraction Through Prism	$\begin{aligned} \mathbf{r_1} + \mathbf{r_2} &= \mathbf{A} \\ \delta &= \mathbf{i} + \mathbf{e} - \mathbf{A}. \end{aligned}$ $\checkmark \text{When } \delta = \delta_{\text{min}} \text{ , the angle of minimum deviation, then } \mathbf{i} = \mathbf{e} \text{ and } \mathbf{r_1} = \mathbf{r_2}$	N e Base R			

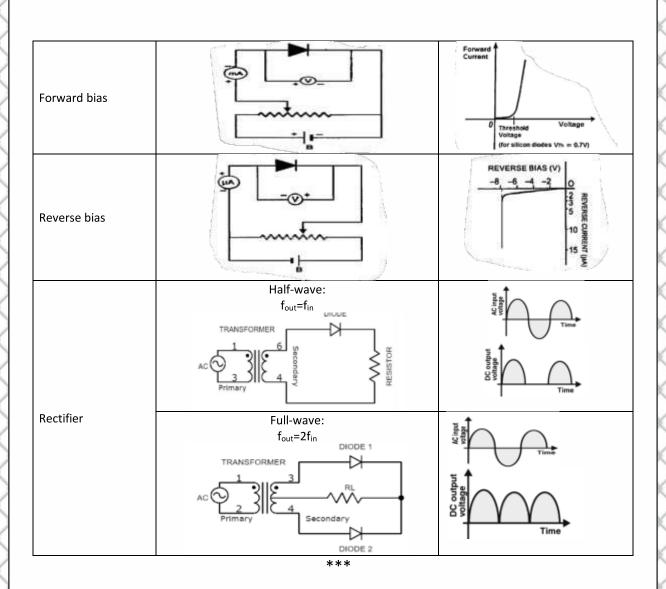
	✓ Fo	$n_{rel} = \frac{\sin\left[\frac{A + \delta_m}{2}\right]}{\sin\left[\frac{A}{2}\right]}$ or a thin prism (A \le 10°) $= (n_{rel} - 1)A$	δ δ _{min}
Refraction at Spherical Surfaces & lens makers formula	$\frac{n_2}{v}$	$-\frac{n_1}{u} = \frac{n_2 - n_1}{R}$ $(n_{\text{net}} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	Flarer (n _s) M P C H P C Dersear (n _s)
Focal Length of a Lens Combination	<u>:</u>	$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$	O C ₁
Cutting of a Lens			51 51
	Compound microscope	$M_{\infty} = \frac{V_0 D}{U_0 f_e}$ $M_D = \frac{V_0}{U_0} \left(1 + \frac{D}{f_e} \right)$	
Optical instrument	Telescope	$M_{\infty} = \frac{f_0}{f_e}$ $M_D = \frac{f_0}{f_e} \left(1 + \frac{f_e}{D}\right)$	Francisco Por Por Por Por Por Por Por Por Por Po
		WAVE OPTICS	

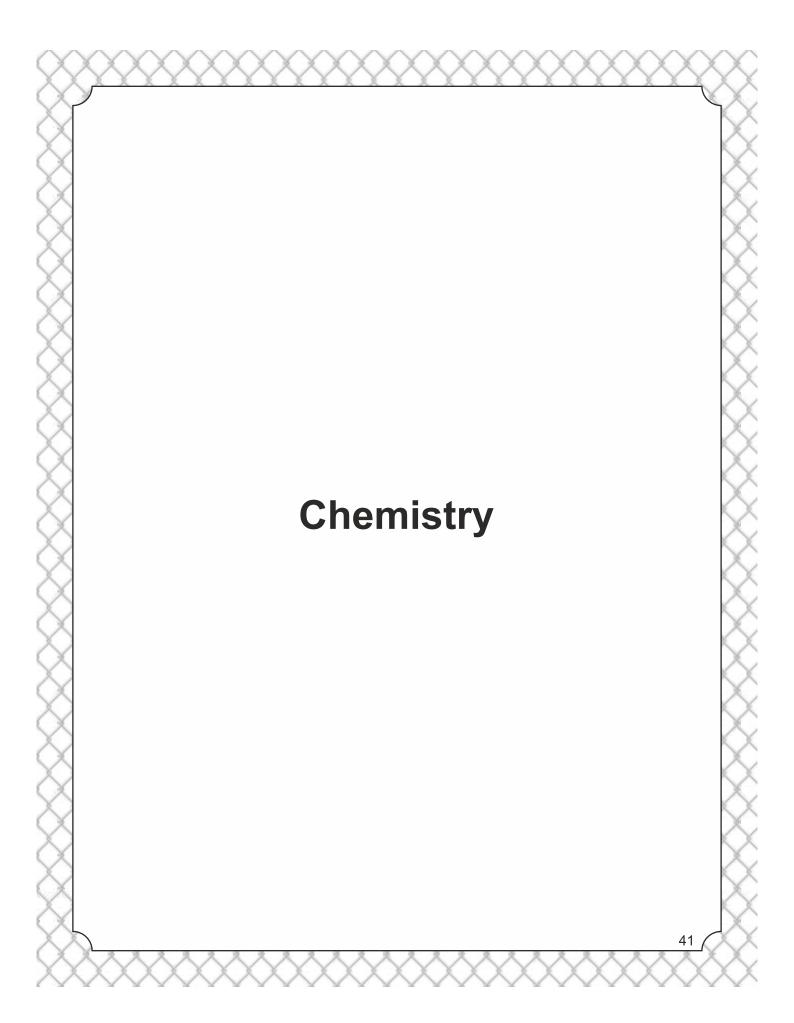

		WAVE OF ITCS	
Resultant intensity	1, = 12, 1 =	$2\sqrt{I_1I_2} \cos{(\Delta\phi)}$ $4I_1\cos^2{\left(\frac{\Delta\phi}{2}\right)}$ ent sources I_1+I_2	4 I (Intensity with interference) 2 I (Intensity without interference) I (Intensity with only one source)
	Constructive	Destructive interference	- 2λ - 3λ/2 -λ -λ/2 λ/2 λ 3λ/2 2λ (Path difference)
	Interference	$I_{min} = (\sqrt{I_1} - \sqrt{I_2})^2$	- 4π - 3π - 2π - π π 2π 3π 4π (Phase difference)
	$I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$		
	Path difference	Fringe width β	
	$\Delta p = S_2 P - S_1 P$	$\beta = \frac{\lambda D}{d}$	Screen
	$= d \sin \theta$	r d	P T
YDSE	Highest order maxima $\mathbf{n}_{\text{max}} = \begin{bmatrix} \frac{\mathbf{d}}{\lambda} \end{bmatrix}$	Highest order minima $n_{max} = \left[\frac{d}{\lambda} + \frac{1}{2}\right]$	J. s. 10.28
	Total number of maxima = 2n _{max} + 1	Total number of minima = 2n _{max}	L S ₂ D


	Position of bright fringe= $y_{\text{bright}} = \frac{n\lambda}{d}D$	Position of dark fringe= $y_{\text{dark}} = \frac{(2n-1)\lambda D}{2d}$	
		I maxima where the bright	
		coincide:	
	y = n ₁	$\beta_1 = n_2 \beta_2$	
	For maxima	For minima	
	asin θ =(2n+1) $\frac{\lambda}{2}$	asinθ=nλ	
	Linear width of central	Angular width of central	→ I
	maxima	maxima	→ 2λ/a
	$2D\lambda$	$\frac{2\lambda}{2}$	λ/a
Diffraction	а	а	a 0
	Linear width of any	angular width of any	-\lambda/a
	other secondary	other secondary maxima	22/2
	maxima	$\frac{\lambda}{}$	→ -2λ/a
	$\frac{D\lambda}{}$	а	→ U
	a		-
		ringes inside diffraction	Λ
		axima	All A
	=	$=\frac{2d}{a}$	AHA.
		etween two slits	A IIII A
	a=width	of each slit	
Fresnel's		a^2	Ray optics is valid up to this distance
Distance	$Z_F = \frac{a^2}{\lambda}$		ignoring broadening oflight beam due
		**	to diffraction.

MODERN PHYSICS




37



SEMICONDUCTORS

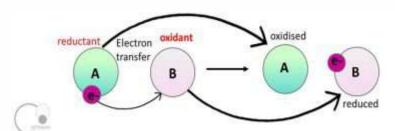
Chemistry 9 & 10 Foundation

Cations are positively-charged ions (atoms or groups of atoms that have more protons than electrons due to having lost one or more electrons). Anions are negatively-charged ions (meaning they have more electrons than protons due to having gained one or more electrons).

Cations

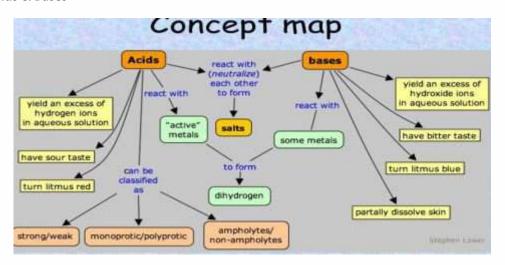
hydrogen ion lithium ion sodium ion potassium ion rubidium ion ammonium ion silver ion beryllium ion magnesium ion calcium ion strontium ion barium ion zinc ion cadmium ion aluminum ion	Formula and Charge H* Li* Na* K* Rb* NH4* Ag* Be*2 Mg*2 Ca*2 Sr*2 Sr*2 Ba*2 Ca*2 Al*3	copper(I) ion copper(II) ion iron(II) ion iron(III) ion iron(III) ion tin(IV) ion mercury(I) ion mercury(II) ion lead(II) ion lead(IV) ion nickel(III) ion chromium(III) ion cobalt(III) ion cobalt(III) ion	Common Name cuprous ion cupric ion ferrous ion ferric ion Stannous ion Stannic ion mercurous ion mercuric ion plumbous ion plumbic ion nickelous ion nickelic ion chromous ion chromic ion cobaltous ion cobaltic ion	Formule and Charge Cu ⁺² Fe ⁺² Fe ⁺³ Sn ⁺² Sn ⁺⁴ Hg ₂ ⁺² Hg ₂ ⁺² Pb ⁺² Pb ⁺⁴ Ni ⁺² Pb ⁺³ Cr ⁺² Cr ⁺³ Co ⁺³
---	---	--	---	---

Anions

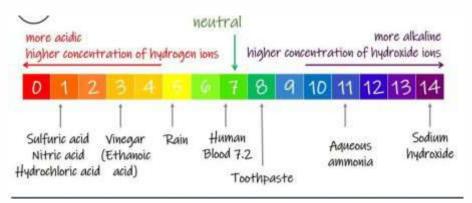

Name	Charge	Name	Charge
fluoride ion	F	chlorate ion	ClO ₃
chloride ion	CI.	bromate ion	BrO ₃
bromide ion	Br'	iodate ion	103
iodide ion	Г	nitrate ion	NO ₃
hydride ion	H	sulfate ion	SO4-2
hydroxide ion	OH.	bisulfate ion	HSO ₄
cyanide ion	CN CN	(hydrogen sulfate ion)	15.11
sulfide ion	S-2	carbonate ion	CO3-2
bisulfide ion	HS"	bicarbonate ion	HCO3
(hydrogen sulfide i	on)	(hydrogen carbonate)	
oxide ion	O-2	phosphate ion	PO4
		arsenate ion	AsO4-3
	Formula and	silicate ion	SiO ₃ -2
Name	Charge	chromate ion	CrO ₄ -2
Oxalate Ion	C2O4-2	dichromate ion	Cr2O7-2
Peroxide Ion	O2 ·2	acetate ion	C2H3O2
Thiocyanate Ion Thiosulfate Ion	CNS ⁻ S ₂ O ₃ ⁻²	permanganate ion	MnO ₄

COMMON NAME AND FORMULA OF IMPORTANT CHEMICAL COMPOUNDS

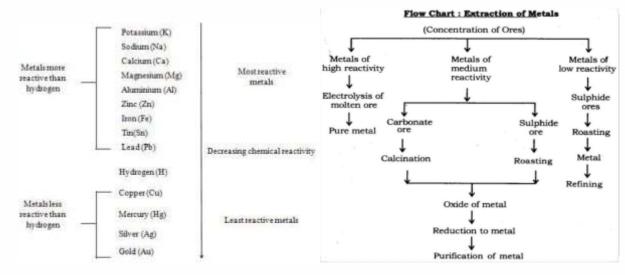
Common Name	Chemical Compound	Chemical Formula
Baking Sodo	Sodium Bicarbonate	NaHCO ₃
Bleaching Powder	Calcium Oxychloride	CaOCL ₂
Blue Vitriol	Copper Sulphate	CuSO ₄ .5H ₂ O
Caustic Potash	Potassium Hydroxide	кон
Caustic Soda	Sodium Hydroxide	NaOH
Chalk (Marble)	Calcium Carbonate	CaCo ₃
Chloroform	Trichloro Methane	CHCl ₃
Dry Ice	Solid Carbondioxide	CO ₂
Epsom	Magnesium Sulphate	MgSo ₄
Green Vitriol	Ferrous Sulphate	FeSo ₄
Gypsum	Calcium Sulphate	CaSo ₄
Heavy Water	Deuterium Oxide	D ₂ O
Laughing Gas	Nitrous Oxide '	N₂O
Magnesia	Magnesium Oxide	MgO
Marsh Gas	Methane	CH4
Mohr's Salt	Ammonium Ferrous Sulphate	FeSO ₄ (NH ₄)2SO _{4.6} H ₂ O
Plaster of Paris	Calcium Sulphate	CaSO ₄ 2H ₂ O
Potash Alum	Potassium Aluminium Sulphate	KALSO,
Quick Lime	Calcium Oxide	CaO
Sand	Silicon Oxide	SiO ₂
Slaked Lime	Calcium Hydroxide	Ca(OH) ₂
Sugar	Sucrose	C ₁₂ H ₂₂ O ₁₁
T.N.T.	Trinitrotoluene	C ₇ H ₅ N ₃ O ₆
Vermeljum ·	Mercuric Sulphide	HgS
Vinegar	Acetic Acid	CH ₃ COOH
Washing Soda	Sodium Carbonate	Na ₂ CO ₃
White Vitriol	Zinc Sulphate	ZnSo ₄ .7H ₂ O


Atomic Number	Name of the Element	Electronic Configuration (subshell wise)	Valency	Electronic Configuration (shell wise)
1	Hydrogen (H)	15 ¹	1	1
2	Helium (He)	1s ²	0	2
3	Lithium (Li)	1s ² 2s ¹	1	2, 1
4	8eryllium (Be)	1s ² 2s ²	2	2, 2
5	Boron (B)	152 252 2p1	3	2, 3
6	Carbon (C)	1s2 2s2 2p2	4	2, 4
7	Nitrogen (N)	152 252 2p3	3	2,5
8	Oxygen (O)	1s ² 2s ² 2p ⁴	2	2, 6
9	Fluorine (F)	1s ² 2s ² 2p ⁵	1	2.7
10	Neon (Ne)	1s2 2s2 2p6	0	2, 8
11	Sodium (Na)	1s2 2s2 2p6 3s1	1	2, 8, 1
12	Magnesium (Mg)	1s ² 2s ² 2p ⁶ 3s ²	2	2, 8, 2
13	Aluminium (Al)	1s2 2s2 2p6 3s2 3p1	3	2, 8, 3
14	Silicon (Si)	1s2 2s2 2p6 3s2 3p2	4	2, 8, 4
15	Phosphorus (P)	1s2 2s2 2p6 3s2 3p3	5, 3	2, 8, 5
16	Sulphur (5)	1s2 2s2 2p6 3s2 3p4	2.	2, 8, 6
17	Chlorine (CI)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁸	1	2, 8, 7
18	Argan (Ar)	1s2 2s2 2p8 3s2 3p6	0	2, 8, 8
19	Potassium (K)	1s2 2s2 2p6 3s2 3p6 4s1	1	2, 8, 8, 1
20	Calcium (Ca)	152 252 2p6 352 3p6 452	2	2, 8, 8, 2
21	Scandium (Sc)	1s2 2s2 2p6 3s2 3p6 3d1 4s2	3	2, 8, 9, 2
22	Titanium (Ti)	1s2 2s2 2p6 3s2 3p6 3d2 4s2	4	2, 8, 10, 2
23	Vanadium (V)	1s2 2s2 2p6 3s2 3p6 3d3 4s2	5, 4	2, 8, 11, 2
24	Chromium (Cr)	1s2 2s2 2p8 3s2 3p8 3d5 4s1	2	2, 8, 13, 1
25	Manganese (Mn)	1s2 2s2 2p6 3s2 3p6 3d5 4s2	7, 4, 2	2, 8, 13, 2
26	Iron (Fe)	1s2 2s2 2p53s2 3p53d6 4s2	2.3	2, 8, 14, 2
27	Cobalt (Co)	1s2 2s2 2p6 3s2 3p6 3d7 4s2	3, 2	2, 8, 15, 2
28	Nickel (NI)	1s2 2s2 2p6 3s2 3p6 3d8 4s2	2	2, 8, 16, 2
29	Copper (Cu)	1s2 2s2 2p6 3s2 3p6 3d20 4s1	2, 1	2, 8, 18, 1
30	Zinc (Zn)	1s2 2s2 2p6 3s2 3p6 3d10 4s2	2	2, 8, 18, 2

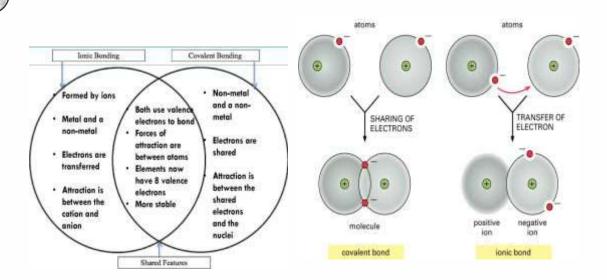
REDOX REACTION



LEO (loss electrons oxidation) A	GER (gain electrons reduction) B
Reductant	Oxidant
Acts as a reducing agent to B	Acts as an oxidising agent to A
☐ is oxidised	☐ is reduced
☐ loses electrons	☐ gains electrons


Acids & Bases

pH and its scale



Reactivity of Metals -

Metals	Non - Metals
(i) Have a tendency to donate electrons.	(i) Have a tendency to receive electrons.
 (ii) Displace hydrogen gas from dilute acids. Zn + 2HCl → ZnCl₂ + h₂ 	(ii) Don't displace hydrogen gas from dilute acids.
(iii) React with oxygen to produce basic oxides. 4 Na + O ₂ → 2Na ₂ O	(iii) React with oxygen to produce acidic oxides. C+O ₂ → CO ₂
(iv) React with hydrogen to produce Hydrides. Ca + H ₂ → CaH ₂	(iv) React with hydrogen to produce covalent compounds. C+2H ₂ → CH ₄

Chemical Properties	Metals	Non-metals
1. Reaction with oxygen	Metals react with oxygen to form basic oxides which form bases when dissolve in water.	Non-metals react with oxygen to form acidic oxides which form acids when dissolve in water.
2. Reaction with water	Metals react with water to form their oxides or hydroxides.	Non-metals do not react with water.
3. Reaction with acids		Non-metals do not react with arids except sulphur which react with hot, concentrated acid.
4. Reaction with bases	bases. However, some metals like Al,	Generally, non-metals do not react with bases. Sometimes, some complex reactions take place between non- metals and bases.

IMPORTANT FACTS TO MEMORIZE

Most abundant element in human body	Oxygen	Highest ionization potential	Не
Most abundant gas in sun	H ₂	Lowest ionization potential	Cs
Most abundant gases in universe	H _p He	Lowest electron affinity	Noble gases (zero)
Element having maximum tendency	Li	Highest electron affinity	CI
for catenation		Non-metals having	iodine,
Most abundant metal	Al	metallic lusture	graphite
of earth		Element sublime on	1
Rarest element of	Astatine (At)	heating	
earth		Coolant in nuclear	D ₂ O
Most abundant	Oxygen (O)	reactors	
element of earth		Most poisonous	Pu
Element containing	'H _t	element	
no neutron		Liquid non-metal	Br,
Amphoteric metals	Zn, Al, Sn, Pb	Total number of	25
Noble metals	Au, Pt	radioactive elements	
Elements having highest	Boron	in periodic table	
tensile strength		Volatile d-block	Zn, Cd, Hg
Metals showing highest	Ru, Os	elements	
oxidation number		Liquid metals s	Hg, Ga, Cs,
Non-metal having	Diamond	***	Fr, Eka
highest m.p., b.p.		Element kept in water	P
Lightest element	Н	Elements kept in	Na, K, I, Cs
Heaviest naturally	238U	kerosene oil	722
occurring element		Metal with highest	W

Strongest basic	CsOH
hydroxide	
Strongest basic oxide	CsO, (caesium
004 3045 40	peroxide)
Most stable metal	Cs,CO,
carbonate	35. 35.
Element with highest	Ra
radioactivity	
Strongest reducing	Azide (N ₂)
agent	7.555.55799E-#9.5
Strongest oxidising	OF,
agent	1-11-5
Smallest anion	H- (hydrides)
Smallest atomic size	Н
Largest atomic size	Cs
Element with	Ag (46)
maximum number	
of isotopes	
Element with	H(3)
minimum number	
of isotopes	
Element with	Sn
maximum number	
of allotropes	
Liquid element of	Francium (Fr)
radioactive nature	
Poorest conductor	Pb (metal),
of current	S (non-metal)

Best electricity	Ag	m.p.		Metalloids elements	B, Si, Ge, As,
conductor among		Metal with lowest	Hg	Sb, Te	
metals		m.p.		Dry ice	CO,
Best conductor among non metals	Graphite	Non metal with highest refractive index	Diamond	Most recently elements name	Ds (atomic number = 110)
Most reactive solid	Li	Lowest refractive	Air	by IUPAC	
element		index		'All purpose' grease	Lithium stearate
Most reactive liquid	Cs	Lowest b.p.	Н,	Old name of astatine	Albamine
element		Heaviest solid metal	Os	Most abundant gas in	N ₂
Most reactive gaseous	F	Lightest solid metal	Li	atmosphere	
element		Lightest solid non metal	В	Rarest gas in	Rn
Amphoteric non metal	Si	Hardest naturally	Diamond	atmosphere	
Elements showing	Li-Mg, Be-Al,	occurring non metal		Lightest gas in	H ₂
diagonal relationship	B-Si	Hardest artificial	B,C (norbide)	atmosphere	.03
Highest	F	substance good			
electronegativity		conductor of heat			

Groups containing higher no. of gaseous elements	Group 18 (Noble gases)	Compound with max- imum covalent nature First noble prize in	(diatomic gases)	Strongest acid	HSO ₅ F + 90 % SbF ₅ called magic acid
Most electrovalent	CsF	chemistry	Van't Hoff	Most reactive form	White
compound	Car	Softest form of	Lamp black	of P	(100,00000)
Bad conductor of	Mica	carbon	Lamp track	Least reactive form	Red
electricity		Latest allotrope of	fullerene or	of P	
Lightest radio isotope	Tritium (₁ H³)	carbon	bucky ball	Purest form of silica	Quartz
			-5.0.052.00	Most ductile metal	Gold

IMPORTANT CHEMICAL COMPOUNDS

Fe			Schonite	\rightarrow	MgSO ₄ .	Fluorapatite	\rightarrow	3Ca, (PO ₄) ₂ , CaF ₂
Magnetite	\rightarrow				K ₂ SO ₄ .6H ₂ O	Gypsum	\rightarrow	CaSO_2H_O
Limonite	\rightarrow	3 Fe ₂ O ₃ .3H ₂ O	Dolomite	\rightarrow	MgCO ₃ .CaCO ₃	Sr		
Iron Pyrite	\rightarrow	FeS ₂	Epsomite	\rightarrow	MgCO ₃ .7H ₂ O	Strontionite	_	SrCO
Haematite	\rightarrow	Fe ₂ O ₃	Kainite	\rightarrow	MgSO ₄ . KCl. 3H ₂ O	Celestite		SrSO,
Copper Pyrite	\rightarrow	CuFeS ₂	Olivine	\rightarrow	Mg,SiO,	Menoments		31304
Spathic Iron	\rightarrow	FeCO ₃	Spinel	\rightarrow	Mg,Al,O,	Ores of Ba		51200000
Cu			AI		383 CU #U OO # 12 # 13	Barytes		BaSO ₄
		C+ O	Corundum	_	Al,O,	Whitherite	-	BaCO ₃
Cuprite or Ruby copp		cujo	Diaspore		Al,O,H,O	Ores of Ra		
Copper Gland		Cu S	Bauxite		Al,O, 2H,O	Camotite	\rightarrow	K,O, U,O,
		Cu(OH), CuCO,	Cryolite		Na,AlF,			(VO ₄) ₂ .3H ₂ O
Azurite		Cu(OH), 2CuCO,	Felspar		KAISi,O.	Pitch blende		Uranium oxide
		1	Talc		Mg, H, (SiO,)	Ores of Zn		
Pb			Asbestos		CaMg, (SiO,)	Zinc blends o	-	ZnS
Galena	\rightarrow		Mica		K Al Si, O, (OH),	Sphalerite		
Anglesite		PbSO ₄	Kaolinite		Al(OH), Si,O,	Zincite or Rec	ı —	ZnO
Stolzite		PbWO ₄	Turquoise		AIPO, AI(OH),	zinc		
		РЬСО,	(1.001 # 0504#1#		H,O	Calamine or	\rightarrow	ZnCO ₃
Wulfenite	\rightarrow	PbMnO ₄	Alum Stone	\rightarrow	K2SO4. Al2(SO4)3.	Zinc spar		
Ag			or Alunite		4Al(OH),	Franklinite	\rightarrow	ZnO.Fe ₂ O ₃
Argentite or	\rightarrow	Ag _z S	Be			Willemite	\rightarrow	Zn,SiO ₄
Silver Glan	nce	12.50	Beryl	_	3BeO Al ₂ O ₂ .6SiO ₂	Hg	\rightarrow	HgS (Cinabar)
Pyragurite	\rightarrow	3 Ag ₂ S. Sb ₂ S ₃	72-200		or Be,Al,Si,O,	Cassetirite or	\rightarrow	SnO ₂
Proustite		3Ag ₂ S. As ₂ O ₃	Phenacite	\rightarrow	2BeO SiO, or	Tin Stone		
Horn Silver	\rightarrow	AgCl			Be ₂ SiO ₄	Rutile	\rightarrow	
Mg			Cryso beryl		BeO Al ₂ O ₃	Ilmenite		FeOTiO ₂
Magnesite	\rightarrow	MgCO,	Ca			Beryl		3BeO.Al ₂ O ₃ . 6SiO ₂
Camalite		MgCl, KCl. 6H,O	Anhydrite	\rightarrow	CaSO,	Florapatite	\rightarrow	3Ca ₃ (PO ₄) ₂ .CaF ₂
Carname								

WATER SOLUBILITY OF SOME COMMON INORGANIC COMPOUNDS

- I. All Na*, K* and NH,* com- 5. All iodides, except AgI, PbI,, Hg,I, and pounds are soluble.
- 2. All nitrates, nitrites and acetates are soluble.
- 3. All chlorides, except AgCl, PbCl, and Hg₂Cl₂ are soluble. PbCl₂ is soluble in hot water.
- All bromides, except AgBr, PbBr₂, Hg₂Br₂ and HgBr₂ are soluble.
- Hgl, are soluble.
- All sulphates except BaSO₄, CaSO₄, SrSO₄, PbSO₄, Hg₂SO₄ and Ag₂SO₄ are soluble.
- All carbonates except those of group I elements and (NH₄)₂CO₃ are insoluble.
- 8. All hydroxides except those of group 1 elements, Ba(OH)2, Ca(OH)2 and Sr(OH)2 are insoluble.
- 9. All sulphides except those of group 1 & 2 elements and (NH₄),S are insoluble.
- 10. All phosphates except those of group 1 elements and (NH₄),PO₄ are insoluble.
- 11. All sulphites, except those of group 1 elements and (NH₄)₂SO₃ are insoluble.

SOME IMPORTANT ALLOYS

- Alclad It is an alloy of aluminium and used in making sea planes.
- Alnico It is an alloy of steel (77%), nickel (2%), aluminium (20%) and cobalt (1%).
 It is used in making permanent magnets.
- Aluminium bronze It is an alloy of 90% copper and 10% aluminium. It is used in making coins, trays and picture frames.
- 4. Aluminium bronze contains 90% Cu and 10% Al phosphor bronze consisting of 94% Cu, 5% Sn and 1% P is hard, elastic and used for pump rods, valves, axle bearing and certain other equipments. These are malleable, corrosion resistant and suitable for cold working.
- Babbit metal It is an alloy of Sn (88-90%), Sb (7-4%) and Cu (3-7%). Hard babbit composition is (a) Sn = 91%, Pb = 4.5% and Sb = 4.5% and (b) Sn = 83%, Cu = 8.5% and Sb = 8.5%. It is used as bearing metal.
- Bell metal It is an alloy of Cu and Sn having 80% Cu and 20% Sn. It is hard, brittle and sonorous. It is used for fabricating machine parts and bells, gongs
- Brass It is an alloy of 70% copper and 30% zinc. It is used in making utensils etc.
- Britania metal or pewter It is an alloy of Sn (85-95%), Sb (6-10%), and Cu (1-3%). It is used for making cups, mugs and other utensils.
- Bronzes These are mostly the alloys of copper and tin and contain 75–90%

- 15. Ferro alloys Ferro molubdenum is an alloy of Mo. Usually the percentage of Mo is less than 1%, but about 1.5-2% Mo has been used for high speed steel and 5% Mo in resisting steels. 6-10% Mo is used for preparing special steels. Ferro silicon has a composition of Si = 90-95%, C = 0.15%, S = 0.01% and P = 0.05%.
- Ferro manganese or Spiegeleisen has average composition Mn = 78-82%, C = 7.5%, P = 0.35%, S = 0.5% and Si = 1.25%.
- Ferro nikel contains Ni = 2.5-5%. It is hard, tough and rustless. It is used in the manufacture of cables. Propeller shaft, armor plates etc.
- 18. Ferro titanium has a composition of Ti = 38-45%, C = 0.1-6%, Si = 15-25% and Al = 9-10%, Ferro tungsten is hard and strong and contains W = 14-20%. It is used in the manufacture of high speed tools.
- 19. Ferro vanadium has composition V = 30-40%, C = 3.5%, P = 0.25%, S = 0.4%, Si = 13% and Al = 1.5%. It has high tensils strength and is used for making springs, axles, shafts etc. Both tungsten and vanadium make steel hard. Such hard steel is used for making high speed tools.
- German silver or Nickel silver These are Cu-Zn-Ni alloys containing about 50% Cu, 25% Zn and 25% Ni. Nickel is used for fancy articles, forks, spoons, cigarette

- Nickel coinage alloy for coinage purpose, an alloy of Ni(25%) and Cu (75%) is used. Another coinage alloy is silver coinage which contains 5% nickel.
- Pewter It is an alloy of 24% Pb and 76% Sn and used for making utensils.
- Rose metal It is an alloy of Bi(50%), Pb(25%) and Sn(25%). It is used in making stereo metal in printing and safety Plugs in boilers.
- Silicon Bronze contains upto 4% Si and upto 1% Fe, Mn. Zn and Al, but does not contain Sn. They have strength like mild steel, excellent corrosion resistance and also have welding prop.
- 30. Solder It is an alloy of 67% Sn and 33% Pb. It is used in soldering. Soft solder contains 3-80% Pb and 97-20% Sn. This tin-lead alloy is used for joining metal parts because of its low melting point.
- Stainless steel It contains Cr (about 11%) and Ni (about 7%). It is used in making utensils and surgical instruments.
- Sterite It is an alloy of chromium, tungsten and nickel and is used for the manufacture of high speed tools and cutlery. This alloy is also used for making surgical instruments.
- 33. Tiscor It contains maximum 0.1% carbon, Mn = 0.1 0.4% (maximum), Cr = 0.7 1.1%, Cu = 0.3 0.5%, Si = 0.5 1.0%, P = 0.1 0.2% and S = 0.05%. These two alloys (Tiscorn and Tiscor) are high strength engineering steels prepared by Tata Iron and Steel company in India.
- 34. Tiscorn It contains maximum 0.3% carbon, Mn = 0.5-1.3%, Cr = 1.00%, Ca = 0.25-0.6%, Si = 0.3% (maximum), P = 0.05% (maximum) and S = 0.05% (maximum).
- Type metal It is an alloy of Pb(82%), Sb(15%) and Sn(3%) and is used for making type for printing.
- Wood metal It is alloy of Pb(25%), Sn (12.5%), Cd (12.5%) and Bi (50%). It is used as automatic sprinkles. It melts in hot water as its melting point is 68°C.

- mainly used for making coins, statues an special type of utensils.
- Constantan It is an alloy of nickel (40%) and copper (60%). It is used in electrical work such as for making resistance boxes and thermo couples etc.
- Delta metal It is an alloy of Cu (55%), Zinc (41%) and Fe(4%). It is used in making ships, bearing, and properllers.
- Duralumin It is an alloy of Al(95.5%), Copper(4%), Mg(0.5%) and Mn(0.5%).
 It is used in making aeroplanes parts.
- Dutch metal It is an alloy of copper and Zinc and is used in gold coverings.
- Electron It is an alloy of Mg and Zn with small amounts of Al, Cu and Mn. It is a hard metal alloy used for making propellers of engines and air-crafts.

- Gun metal It is an alloy of Cu, Sn and Zn. It contains 88% Cu, 10%Sn and 2%Zn. It is used in making guns. Gears and bearings.
- Invur It has 64% Fe, 35% Ni and some traces of Mn, C. It is used in making pendulum rods.
- Magnalium It is an alloy of 90% Al and 10% Mg. It is used in making balance beams.
- Monel metal It is an alloy of 30% Cu, 67%Ni and 3%Mn or Fe. It is used for the construction of household sinks and containers and alkali-resisting equipments.
- Nichrome It is an alloy of Ni(60%), Cr(15%) and Fe(25%) and is used in making electrical resistance.

IMPORTANT COMPOUNDS

- 1. Agate is silicon dioxide, SiO,.
- 2. Ammonal is a mixture of ammonium nitrate and Al powder (NH, NO, + Al). It is used as an explosive.
- Alum is (NH_a)₂SO₄AI₂(SO₄)₁.24H₂O. It is used as mordant by dyers of clothes. Potash alum is K,SO, Al,(SO,), 24H,O.
- 4. Aqua fortis is nitric acid, HNO,
- 5. Antichlor is sodium thiosulphate, Na,S,O, 5H, O. It is also called Hypo.
- 6. Aqua-Regia is a mixture of conc. HNO, and conc. HCl in the ratio of 1:3. It is also known as kingly water.
- 7. Baking soda is sodium bicarbonate, NaHCO.
- 8. Barytes is barium sulphate, BaSO,
- 9. Brine is sodium chloride (NaCl) solution.
- 10. Blue vitriol is copper sulphate, CuSO, 5H,O.
- 11. Bone ash is mainly calcium phosphate, Ca₁(PO₂)₂
- Borax is the name of sodium tetrabo-rate hydrate Na,B,O, 10H,O. Borax (Na,B,O,) is also called tincal.
- 13. B(OH), is an acid.
- 14. Brown Ring is of FeSO, NO
- 15. Butter of tin is SnCl, .5H,O.
- 16. B.O.D. is biological oxygen demand.
- 17. Cuprite is Cu,O.
- 18. Calomel is Hg,Cl,
- 19. Caustic potash is KOH.
- 20. Caustic soda is sodium hydroxide,
- 21. Chile saltpeter is sodium nitrate, NaNO.
- 22. Cinnabar is HgS.
- 23. Carbonic acid is hydrogen carbonate, H,CO,
- 24. Carbolic acid is phenol, C.H.OH.
- 25. Carborundum is silicon carbide, SiC.
- 26. Copper glance is Cu,S.
- 27. Carbogen is a mixture of 1% CO, and O, It is used as antidote for for CO poisoning.
- 28. Corrosive sublimate is mercuric chloride, HgCl_
- 29. Corundum is aluminium oxide, Al,O,
- 30. Chromyl chloride is CrO_Cl_.
- 31. Cream of tartar is KHC, H,O,
- 32. Cyanogen is C,N,
- 33. Dead burnt plaster is anhydrous CaSO,
- 34. Dry ice is solid carbon dioxide (CO,).
- 35. Epsom salt is the name of magnesium sulphate, MgSO, .7H,O.
- 36. Energy is a mixture of Al,O, and Fe,O,
- 119. Sterling silver is a solution of Cu and
- 120. Stranger gas is xenon (Xe).
- 121. Sugar of lead is lead acetate, (CH,COO),Pb.
- 122. Super phosphate of lime contains Ca (H,PO,).H,O and 2CaSO, 2H,O
- 123. Syvine is KCL
- 124. Tartar emetic is potassium antimony tartrate, K(SbO)C,H,O,.
- 125. TNT is trinitrotoluene, an explosive.

- 37. Eka aluminium is gallium.
- 38. Fluorspar is CaF,..
- 39. Freon is CCLF.
- 40. Formalin is 40% formaldehyde (HCHO).
- 41. Fremy's salt is potassium hydrogen fluoride KHF...
- 42. Foul air is nitrogen, N,. It is also called azote.
- 43. Fischer's salt is potassium cobalt nitric K,[Co(NO,),]
- 44. Fowler's solution is NaAsO, solution.
- 45. Fusion mixture is Na,CO, + K,CO,
- 46. Fluorine is called super halogen.
- 47. Fulminating gold is Au(NH.) = NH.
- 48. Grain alcohol is ethyl alcohol, C.H.OH. 49. Grape sugar is dextrose, C, H, O,
- 50. Glauber's salt is the name of sodium sul-
- phate, Na,SO, 10H,O. 51. Gypsum calcium sulphate. CaSO, 2H,O
- ferrous sulphate. 52. Green vitriol 18 FeSO, 7H,O
- 53. Gammexane is benzene hexachloride (BHC), C,H,Cl,
- Gun powder is a mixture of sulphur, charcoal and nitre
- 55. Graham's salt is (NaPO,),
- 56. Hydrolith is calcium hydride, CaH,
- 57. Halite is common rock salt (NaCl).
- 58. Horn silver is AgCl.
- 59. Hair salt is Al,(SO,), 18H,O.
- 60. Hypo is Na,S,O,5H,O.
- 61. King of chemicals is H,SO,
- 62. Kali : Germans used the word 'Kali' for Potash.
- 63. Limestone is calcium carbonate, CaCO,
- 64. Lunar caustic is silver nitrate, AgNO,
- 65. Laughing gas is nitrous oxide, N.O. It is also known as laughing grites.
- 66. Lithia water is aqueous solution of lithium bicarbonate (LiHCO,).
- 67. Lapis Lazuli is blue coloured mineral used as semi-precious stone. It is sodium
- alumino silicate. 68. Milk of magnesia is magnesium hydrox-
- ide, Mg(OH),
- Marshall's acid is persulphuric acid, H,S,O,
- Milk of lime is calcium hydroxides, Ca(OH). It is also called slaked lime.
- 71. Magnesite is MgCO,
- 72. Microscopic salt is Na(NH,)HPO, 4H,O.
- 73. Mica is KH,Al,(SiO,)
- 74. Magnesia is MgO.
- 75. Mosaic gold is SnS,
- 76. Marsh gas or fire damp is CH,
- 126. Tear gas is chloropicrin, CCl, NO,
- 127. TEL is tetra ethyl lead, Pb(C,H,),
- 128. Thomas slag is calcium phosphate, Ca₃(PO₄)₂.

 129. Tincture of iodine is 1, and KI solution
- in alcohol.
- 130. Thermite is a mixture of iron oxide (Fe,O4) and Al powder.
- 131. Tinstone or Cassiterite is SnO
- 132. Vinegar is dilute acetic acid, CH,COOH.
- 133. Washing soda is Na,CO,

- 77. Mohr's FeSO (NH), salt SO, 6H,O.
- 78. Muriatic acid is hydrochloric acid, HCl
- 79. Nessler's reagent is K2Hgl4. It contains HgCl,, KI and NaOH. The ions present in it is Hgl,2
- 80. Nitre Cake is NaHSO,
- 81. Nitrolim is CaCN, + C (graphite)
- 82. Norweigian saltpetre is basic calcium nitrate, Ca(NO,),.
- 83. Oxone is sodium peroxide, Na₂O
- 84. Oil of vitriol is sulphuric acid, H,SO,
- Oleum is furning sulphuric acid, concentrated H₂SO₂ + SO₃.
- 86. Oil of mirbane is C.H.NO,
- 87. Oil of winter green is methyl salicylate.
- 88. Plaster of paris is calcium sulphate hemihydrate, CaSO, 1/, H,O.
- 89. Philosopher's wool is zinc oxide, ZnO.
- 90. Phosgene is carbonyl chloride, COCl,
- 91. Pieric acid is 2,4,6-trinitrophenol
- 92. Paris green is double salt of copper acetate and copper arsenate.
- 93. Pearl white is BiOCl and is used as a pungent.
- 94. Prussian blue is Fe, [Fe(CN),],
- 95. Pearl ash is K.CO.
- 96. Perhydrol is 30% H,O,
- 97. Prussic acid HCN
- 98. Quick lime is calcium oxide, CaO.
- Quarty is eilicon dioxida SiO
- 99. Quartz is silicon dioxide, SiO,
- 100. Quick silver is mercury, Hg.
- 101. Realgar is As₂S₃ 102. Rectified spirit is 95% ethyl alcohol,
- C,H,OH.
- 103. Reagar is As, S, 104. Red lead is lead tetroxide, Pb,O, It is also called Minium.
- 105. Red liquor is aluminium acetate, (CH,COO), AL
- 106. Rochelle salt is sodium potassium tartrate, NaKC,H,O,
- 107. Rock salt is NaCl.
- 108. Ruby or sapphire or Emery is Al₂O₄
- 109. Salt cake is sodium sulphate, Na,SO,
- 110. Sand is silicon dioxide, SiO,
- 111. Scheeb's green is CuHAsO,
- 112. Selidlitz powder is NaHCO, 113. Smelting salt is (NH₄),CO,
- 114. Soda lime is a mixture of NaOH and C±0.
- 115. Soda ash is sodium carbonate, Na,CO,
- 116. Sodamide is NaNH.
- 117. Spirit of wine is C.H.OH.
- 118. Spirit of salt is HCl.
 - 134. Water glass is sodium silicate, Na,SiO,.
- 135. White lead is Pb(OH), 2PbCO,
- Wackenroder's liquid is H₂SO₄ + H₂S. 137. White vitriol is Zinc sulphate,
- ZnSO, 7H,O
- 138. Wood spirit is CH,OH. 139. Verdigris is the name of basic copper acetate, (CH,COO), Cu Cu(OH),
- 140. Yellow ammonium sulphide (NH,),Sx.
- 141. Zincite is ZnO.

ACTION OF HEAT ON SOME SALTS

$$ZnCO_3$$
 (white) \rightarrow $ZnO + CO_2$ (yellow-hot; white-cold)
 $CuCO_3$ (green) \longrightarrow $CuO + CO_2$ (black)
 $CaCO_3$ \longrightarrow $CaO + CO_2$
 $2Ag_2CO_3$ \longrightarrow $4Ag + 2CO_2 + O_2$
 $2NaHCO_3$ \longrightarrow $Na_2CO_3 + CO_2 + H_2O$
 NH_4HCO_3 \longrightarrow $NH_3 + CO_2 + H_2O$
 $2FeSO_4$ \longrightarrow $Fe_2O_3 + SO_2 + SO_2$
 $2CaSO_4 2H_2O 393K 2CaSO_4$
 $\frac{1}{2}H_2O + 3H_2O$ (Plaster of paris)
 $CuSO_4 SH_2O$ (blue) \longrightarrow $CuSO_4 + SH_2O$ (white)

$$\begin{array}{c} \text{CuSO}_4 \longrightarrow \text{CuO} + \text{SO}_3 \\ (\text{NH}_4)_2\text{Cr}_2\text{O}_1 (\text{orange}) \longrightarrow \text{N}_1 + \text{Cr}_2\text{O}_3 + \\ 4\text{H}_2\text{O} (\text{green}) \\ 2\text{KMnO}_4 \longrightarrow \text{K}_2\text{MnO}_4 + \text{MnO}_2 + \text{O}_2 \\ 2\text{KClO}_3 \longrightarrow 2\text{KCl} + 3\text{O}_2 \\ 4\text{K}_2\text{Cr}_2\text{O}_7 \longrightarrow 4\text{K}_2\text{CrO}_4 + 2\text{Cr}_2\text{O}_3 + 3\text{O}_2 \\ (\text{COO})_2\text{Fe} \longrightarrow \text{FeO} + \text{CO} + \text{CO}_2 (\text{black}) \\ 2\text{Ag}_2\text{O} \longrightarrow 4\text{Ag} + \text{O}_2 \\ 2\text{HgO} (\text{red}) \longrightarrow 2\text{Hg} + \text{O}_2 (\text{silver deposit}) \\ 2\text{Pb}_3\text{O}_4 (\text{red}) \longrightarrow 6\text{PbO} + \text{O}_2 (\text{yellow}) \\ 2\text{PbO}_2 (\text{brown}) \longrightarrow 2\text{PbO} + \text{O}_2 (\text{black}) \\ 2\text{NaNO}_3 \longrightarrow 2\text{NaNO}_1 + \text{O}_2 \end{array}$$

$$NH_4NO_2 \longrightarrow N_2 + 2H_2O$$
 $2AgNO_3 \longrightarrow 2Ag + 2NO_2 + O_2$
 $2Cu(NO_3)_2 \text{ (brown)} \longrightarrow 2CuO + 4NO_2 + O_2$
 $2Zn(NO_3)_2 \text{ (white)} \longrightarrow 2ZnO + 4NO_2 + O_2$
 $yellow\text{-hot}$
 $white\text{-cold (brown)}$
 $2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2$
 $2Pb(NO_3)_2 \text{ (white)} \longrightarrow 2PbO + 4NO_2 + O_2$
 $(yellow) \text{ (brown)}$
 $2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$
 $NH_2NO_3 \longrightarrow N_3O + 2H_3O$

IMPORTANT PROCESSES

- 1. Bosch process --- H,
- 2. Down, Castner Na
- Nelson, Castner Kellner, Solvey Droney, Lowing → NaOH
- Ammonia soda process (Solvay process)
 → Na,CO₁, NaHCO₁

- 7. Perk, Pattinson → Ag
- 8. Cupellation → Ag (Purification)
- 9. Mund's process → Ni (Purification)

- 10. Baeyer's or Serpeck's process → Al

- 13. Gold schmidt crocess → Thermite Welding
- 14. Carter's process ----- White lead
- 15. Haeber's process → NH,
- 16. Deacon's process --> Cl,
- Contact, Lead Chamber process
 → H₂SO₄
- Berkland-Eyde, Ostwald
 → HNO_p NO

- 19. Kaldo, L.D. → steel
- 20. Corey House Alkane
- 21. Oxo --> R OH
- 22. Dow's process → Mg
- 23. Pidgeon → Mg
- 24. Cyanamide → NH,
- 25. IMI → Ti
- 26. frash --> 'S'
- 27. Siemene, Basemer Thomass → Steel.
- 28. Lane's process -> H,
- 29. Gossage process → NaOH

MINERALS WITH METALLIC LUSTURE

Mineral (Formula)	Colour	Crystal System	Uses and Their Properties
Augite [(Ca, Na) (Mg, Fe, Al) (Al, Si), O,]	Black	Monoclinic	Square or 8-sided cross section
Bornite [Cu ₃ FeS]	Bronze, tarnishes to dark blue, purple	Tetragonal	Source of copper; called "Peakcock ore" due to its purple shine when it tarnishes
Chalcopyrite (CuFeS ₂)	Brassy to golden yellow	Tetragonal	Main ore of copper
Chromite (FeCr ₂ O ₄)	Black or brown	Cubic	Ore of chromium, stainless steel, metallurgical bricks
Copper (Cu)	Copper red	Cubic	Pipes, coins, gutters, wire, cooking utensils, jew- ellery, decorative plaques; malleable and ductile
Corundum (Al ₂ O ₃)	Colourless, blue, brown, green, white, pink, red	Hexagonal	Gemstones; ruby is red, sapphire is blue, indus- trial abrasive
Feldspar (orthoclase) (KAISi,O,)	Colourless, white to gray, green and yellow	Monoclinic	Insoluble in acids, used in the manufacture of porcelain

Mineral (Formula)	Colour	Crystal System	Uses and Their Properties
Feldspar (plagioclase) (NaAlSi ₂ O _a) (CaAl ₂ Si ₂ O _a)	Gray, green white	Triclinic	Used in ceramics; striations present on some faces
Fluorite (CaF ₂)	Colourless, white, blue, green, red, yellow, purple	Cubic	Used in the manufacture of optical equipment, glow under ultraviolet light
Galena (PbS)	Gray	Cubic	Source of lead, shields for X-rays, fishing equipmer sinkers, used in pipes
Garnet (Mg, Fe, Ca), (Al ₂ Si ₃ O ₁₂)	Deep yellow-red, green, black	Cubic	Used in jewellery, also used as an abrasive
Gold (Au)	Pale to golden	Cubic	Medicines, jewellery, money, gold leaf, fillings for teeth, does not tarnish
Graphite (C)	Black to grey	Hexagonal	Pencil lead, rods to control some small nuclear rea tions, lubricants for locks, battery poles
Haematite (Fe ₂ O ₃)	Black or reddish brown	Hexagonal	Source of iron; roasted in a blast furnace, converte to "pig" iron, made into steel
Hornblende [Ca Na (Mg, Al, Fe) ₅ (Al, Si) ₂ Si ₆ O ₂₂ (OH) ₂]	Green to black	Monoclinic	Will transmit light on thin edges; 6-sided cross se- tion
Limonite (hydrous iron oxides)	Yellow, brown, black		Source of iron, weathers easily colouring matter of soi
Magnetite (Fe,O,)	Black	Cubic	Source of iron, naturally magnetic, called lodeston
Olivine [(Mg, Fe), SiO ₄]	Olive green	Ortho- rhombic	Gemstones, refractory sand
Pyrite (FeS ₂)	Light, brassy, yellow	Cubic	Source of iron, "fools's gold" alters to limonite
Pyrrhotite (FeS)	Bronze	Hexagonal	Often found with pentlandite, an ore of nickel; ma be magnetic
Quartz (SiO ₂)	Colourless, various colo- rus	Hexagonal	Used in glass manufacture, electronic equipmen radios, computers, watches, gemstones
Silver (Ag)	Silvery white, tarnishes to black	Cubic	Coins, jewellery, silverplate, fillings for teeth, wire malleable and ductile
Topaz [(Al ₂ SiO ₄) (F, OH) ₂]	White, pink yellow, pale blue, colourless	Ortho- rhombic	Valuable gemstone
Bauxite (hydrous aluminium compound)	Gray, red, white, brown	*	Source of aluminum; used in paints, aluminium for and airplane parts
Biotite [K(Mg,Fe), AlSi,O, (OH),]	Black to dark brown	Monoclinic	Occurs in large flexible plates
Calcite (CaCO ₃)	Colourless, white pale, blue	Hexagonal	Fizzes when HCl is added; used in cement and othe building materials
Oolomite [CaMg(CO ₃) ₂]	Colourless, white, pink, green, gray, black	Hexagonal	Concrete and cement, used as an ornamental building stone
Gypsum (CaSO _c 2H ₂ O)	Colourless, gray, white, brown	Monoclinic	Used extensively in the preparation of plaster of paris alabaster, and dry wall for building construction
lalite (NaCl)	Colourless, red, white, blue	Cubic	Salt; very soluble in water; a preservative
Caolinite [Al ₄ Si ₂ O ₅ (OH) ₄]	White, red, reddish brown, black	Triclinic	Clays; used in ceramics and in china dishes; commo in most soils; often microscopic sized particles
fuscovite [KAl ₂ Si ₂ O ₁₀ (OH) ₂]	White, light gray, yellow, rose, green	Monoclinic	Occurs in large flexible plates, used as an insulator i electrical equipment, lubricant
phalerite (ZnS)	Brown	Cubic	Main ore of zinc; used in paints, dyes, and medicin
ulphur (S)	Yellow	Ortho- rhombic	Used in medicine, fungicides for plants, vulcanisa toin of rubber, production of sulphuric acid
Tale [Mg ₃ (OH) ₂ Si ₄ O ₃₈]	White, greenish	Monoclinic	Easily cut with fingernail; used for talcum powder soapstone is used in paper and for table tops

MOLE CONCEPT

SOME USEFUL CONVERSION FACTORS

1 Å = 10-10 m, 1 nm = 10-9 m

1 pm = 10-12 m

 $1 \text{ htre} = 10^{-3} \text{ m}^3 = 1 \text{ dm}^3$

1 atm = 760 mm or torr

= 101325 Pa or Nm-2

1 bar = 105 Nm-2 = 105 Pa

1 calorie = 4.184 J

1 electron volt(eV)=1.6022×10-19 J

 $(1 J = 10^7 \text{ ergs})$

(1 cal > 1 J > 1 erg > 1 eV)

ATOMIC MASS OR MOLECULAR MASS

Mass of one atom or molecule in a.m.u.

 $C \rightarrow 12 \text{ ann}$

H₂O → 18 amu

ACTUAL MASS

mass of one atom or molecule in grams $C \rightarrow 12 \times 1.6 \times 10^{-24} \text{ g}$ $H,O\rightarrow 18 \times 1.6 \times 10^{-24} \text{ g}$

RELATIVE ATOMIC MASS OR RELATIVE MOLECULAR MASS

Mass of one atom or molecule w.r.t. 1/12th of ¹²C atom

C→ 12

H,O → 18

It is unitless

GRAMS ATOMIC MASS OR GRAM MOLECULAR MASS

Mass of one mole of atom or molecule

C→ 12 g

H,O → 18 g

It is also called molar mass

DEFINITION OF MOLE

One mole is a collection of that many entities as there are number of atoms exactly in 12 gm of C-12 isotope. The number of atoms present in exactly 12 gm of C-12 isotope is called Avogadro's number $[N_{\perp} = 6.022 \times 10^{12}]$

 $1u = 1 \text{ arm} = (1/12)^{\frac{1}{2}} \text{ of mass of 1 atom of } C^{12} = \frac{1g}{N_A} = 1.66 \times 10^{-24} \text{ g}$

For elements

- · 1 g atom = 1 mole of atoms = N, atoms
- · g atomic mass (GAM) = mass of N, atoms in g

• Mole of atoms = $\frac{Mass(g)}{GAM \text{ or molar mass}}$

For ionic compounds

For molecule

- 1 g molecule = 1 mole of molecule = N_x molecule g molecular mass (GMM) = mass of N_x molecule in g
- Mole of molecule = Mass(g) GMM or molar mass
- 1 g formula unit = 1 mole of formula unit = N, formula unit.
- g formula mass (GFM) = mass of N_a formula unit in
 - Mole of formula unit = Mass(g) GFM or molar mass

1 mole of substance

Contains 6.022 × 10³ particles

Weighs as much as molecular mass / atomic mass/ionic mass in grams

If it is a gas, one mole occupies a volume of 22.4 L at 1 atm & 273 K or 22.7 L at STP

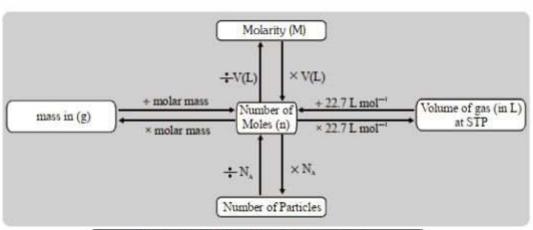
Average or mean molar mass

The average molar mass of the different substance

present in the container $M_{mg} = \frac{M_1 n_1 + M_2 n_2 + ...}{n_1 + n_2 + ...}$

Here M., M. are molar mass of substances and n., n. are mole of substances present in the container.

DENSITIES


Density =
$$\frac{\text{Mass}}{\text{volume}}$$

Relative Density = Density of any substance
Density of reference substance

VAPOUR DENSITY

Ratio of density of vapour to the density of hydrogen at similar pressure and temperature.

Vapour density = $\frac{\text{Molar mass}}{2}$

STOICHIOMETRY BASED CONCEPT

$$aA + bB \rightarrow cC + dD$$

a,b,c,d, represents the ratios of moles, volumes [for gaseous] molecules in which the reactants react or products formed.

a,b,c,d, does not represent the ratio of masses.

The stoichiometric amount of components may be related as

$$\frac{\text{Moles of A reacted}}{\text{a}} = \frac{\text{Moles of B reacted}}{\text{b}} = \frac{\text{Moles of C reacted}}{\text{c}} = \frac{\text{Moles of D reacted}}{\text{d}}$$

[Concept of limiting reagent]

If data of more than one reactant is given then first convert all the data into moles then divide the moles of reactants with their respective stoichiometric coefficient. The reactant having minimum ratio will be L.R. then find the moles of product formed or excess reagent left by comparing it with L.R. through stoichiometric concept.

PERCENTAGE YIELD:

PERCENTAGE PURITY:

The percentage of a specified compound or

DEGREE OF DISSOCIATION, (a):

It represents the mole of substance dissociated per mole of the substance taken.

$$A \rightarrow n \text{ particles: } a = \frac{M_u - M}{(n-1)M}$$

where, n = number of product particles per particle of reactant

M = Molar mass of 'A'

M = Molar mass of final mixture

Dissociation decreases the average molar mass of system while association increases it.

If impurity is unknown, it is always considered as inert (unreactive) material.

PERCENTAGE DETERMINATION OF ELEMENTS IN COMPOUNDS

Mass % of an element in a compound

= atomicity of an element ×atomic mass of an element ×100 molecular mass of compound

EMPIRICAL AND MOLECULAR FORMULA

Empirical formula: Formula depicting constituent atoms in their simplest ratio.

Molecular formula: Formula depicting actual number of atoms in one molecule of the compound.

The molecular formula is generally an integral multiple of the empirical formula.

i.e. molecular formula = empirical formula × n

where $n = \frac{\text{molecular formula mass}}{\text{empirical formula mass}}$

For determination of atomic mass:

Dulong's & Petit's law :

Atomic weight of metal × specific heat capacity (cal/gmo-C) = 6.4.

It should be remembered that this law is an empirical observation and this gives an approximate value of atomic weight. This law gives better result for heavier solid elements, at high temperature conditions.

CONCENTRATION TERMS

Concentration Type	Mathematical Formula	Concept
Percentage by mass	9 ($\frac{w}{w}$) = $\frac{\text{Mass of solute} \times 100}{\text{Mass of solution}}$	Mass of solute (in gm) present in 100 gm of solution.
Volume percentage	$\%\left(\frac{v}{v}\right) = \frac{\text{Volume of solute} \times 100}{\text{Volume of solution}}$	Volume of solute (in cm ³ present in 100 cm ³ of solution.
Mass-volume percentage	$% \left(\frac{w}{v}\right) = \frac{\text{Mass of solute} \times 100}{\text{Volume of solution}}$	Mass of solute (ingni)presen in 100 cm ² of solution.
Parts per million	ppm = Mass of solute × 10* Mass of solution	Parts by mass of solute per million parts by mass of the solution
Mole fraction	X _A = Mole of A Mole of A + Mole of B + Mole of C + X _B = Mole of A + Mole of B + Mole of C +	Ratio of number of moles of one component to the total number of moles.
Molarity	M = Mole of solute Volume of solution(inL)	Moles of solute in one liter of solution.
Molality	m= Mole of solute Mass of solvent(Kg)	Moles of solute in one kg of solvent

MIXING OF SOLUTIONS:

It is based on law of conservation of moles.

Two solutions having same solute: Final molarity = $\frac{\text{Total moles}}{\text{Total volume}} = \frac{M_x V_x + M_x V_x}{V_x + V_x}$

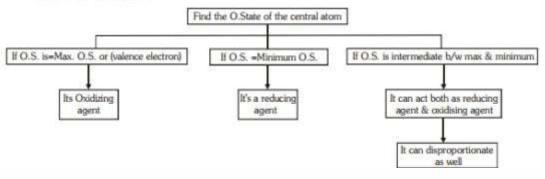
Dilution Effect

Final molarity, $M_2 = \frac{M_1 V_1}{V_1 + V_2}$

REDOX

OXIDISING AND REDUCING AGENT

Oxidizing agent or Oxidant:


Oxidizing agents are those compounds which can oxidize others and reduced itself during the chemical reaction. Those reagents whose O.N. decrease or which gain electrons in a Redox reaction are termed as oxidants.

KMnO₄, K₂Cr₂O₇, HNO₃, conc. H₂SO₄ etc, are powerful oxidizing agents.

Reducing agent or Reductants:

Reducing agents are those compounds which can reduce others and oxidize itself during the chemical reaction. Those reagents whose O.N. increase or which loses electrons in a Redox reaction is termed as reductants. e.g. KI, Na₂S₂O₃ are powerful reducing agents.

□ HOW TO IDENTIFY WHETHER A PARTICULAR SUBSTANCE IS AN OXIDISING OR REDUCING AGENT

REDOX REACTION

A reaction in which oxidation and reduction simultaneously take place.

In all redox reactions the total increase in oxidation number must equal the total decrease in oxidation number:

e.g.
$$10 \stackrel{+2}{\text{Fe}} \text{SO}_4 + 2 \stackrel{+7}{\text{KMnO}}_4 + 8 \text{H}_2 \text{SO}_4 \longrightarrow 5 \stackrel{+3}{\text{Fe}}_2 (\text{SO}_4)_3 + 2 \stackrel{+2}{\text{Mn}} \text{SO}_4 + \text{K}_2 \text{SO}_4 + 8 \text{H}_2 \text{O}_4 + 8 \text{H}_2 \text$$

Equivalent weight (E):

Eq. wt (E) =
$$\frac{\text{Molecular weight}}{\text{valency factor (v.f)}} = \frac{\text{Mol. wt.}}{\text{n-factor}}$$

no of Equivalents =
$$\frac{\text{mass of a sample}}{\text{eq. wt. of that species}}$$

- Equivalent mass is a pure number when expressed in gram, it is called gram equivalent mass.
- The equivalent mass of substance may have different values under different conditions.

n-FACTOR IN VARIOUS CASES

In Non Redox Change

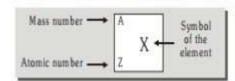
- n-factor for element : Valency of the element
- For acids: Acids will be treated as species which furnish H+ ions when dissolved in a solvent.
- The n-factor of an acid is the no. of acidic H+ ions that a molecule of the acid would give when dissolved in a solvent (Basicity).
- For example, for HCl (n = 1), HNO₃ (n = 1), H₂SO₄ (n = 2), H₃PO₄ (n = 3) and H₃PO₃ (n = 2)
- For bases: Bases will be treated as species which furnish OH– ions when dissolved in a solvent. The n-factor of a base is the no. of OH– ions that a molecule of the base would give when dissolved in a solvent (Acidity).
 - For example, NaOH (n = 1), Ba $(OH)_2$ (n = 2), Al $(OH)_3$ (n = 3), etc.
- For salts: A salt reacting such that no atom of the salt undergoes any change in oxidation state.
- For example, $2AgNO_3 + MgCl_2 ---- \rightarrow Mg(NO_3)_2 + 2AgCl$
- In this reaction, it can be seen that the oxidation state of Ag, N, O, Mg and Cl remains the same even in the product. The n-factor for such a salt is the total charge on cation or anion.

		NTS/REDUCING AGENTS WITH EQ		A223 70
Species	Changed to	Reaction	Electrons exchanged or change in O.N.	Eq. wt.
$MnO_4^-(O.A.)$	Mn ⁴² inacidemedium	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	5	$E = \frac{M}{5}$
$MnO_{4}^{-}(O.A.)$	MnO ₂ inneutral medium	$MnO_4^- + 3e^- + 2H_2O \longrightarrow MnO_2 + 4OH$	3	$E = \frac{M}{3}$
$MnO_4^-(O.A.)$	MnO ₄ ²⁻ in basic medium	$MnO_4^- + e^- \longrightarrow MnO_4^{-2}$	1	$E = \frac{M}{1}$
Cr ₂ O ₇ ²⁻ (O.A.)	Cr ³⁺ in acidic medium	$CrO_1^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$	6	$E = \frac{M}{6}$
MnO ₂ (O.A.)	Mn ²⁺ inacide medium	$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	2	$E = \frac{M}{2}$
Cl ₂ (O.A.) in bleaching powder	CI	$Cl_2 + 2e^- \longrightarrow 2Cl^-$	2	$E = \frac{M}{2}$

ATOMIC STRUCTURE

 Cu^{\uparrow} $Cu^{2+} + e^{-} \longrightarrow Cu^{\uparrow}$

 $S_2O_3^{2-}(R.A.)$ $S_4O_6^{2-}$ $2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e^-$


CuSO₄(O.A.) in indometric titration

IMPORTANT DEFINITIONS

Proton (m _p) /anode rays	Neutron (m,)	Electron(m _e) / cathode rays
mass = 1.67×10^{-27} kg	mass = 1.67×10^{-27} kg	mass = 9.1×10^{-31} kg
mass = 1.67 × 10 ⁻²⁴ g	mass = 1.67×10^{-24} g	mass = 9.1 × 10 ⁻²⁸ g
mass = 1.00750 amu	mass = 1.00850 amu	mass = 0.000549 amu
e/m value is dependent on the nature of gas taken in discharge tube.		e/m of electron is found to be independent of nature of gas & electrode used.

 $E = \frac{M}{1}$ $E = \frac{2M}{2} = M$

REPRESENTATION OF AN ELEMENT

Terms associated with elements:

- Atomic Number (Z): = No. of protons
 Electron = Z C (charge on atom)
- Mass number (A) =Total number of neutron and proton present
 - A = Number of proton + Number of Neutrons
- Isotopes: Same atomic number but different mass number
 - Ex. : , C12, , C13, , C14
- Isobars: Same mass number but different atomic number
 - Ex. H3, He3
- Isodiaphers: Same difference of number of Neutrons & protons

- Isotones: Having same number of neutron
 Ex. ,H³, ,He⁴
- Isosters: They are the molecules which have the same number of atoms & electrons

- Isoelectronic: Species having same no. of electrons
 - Ex. Cl., Ar

BOHR'S ATOMIC MODEL

Theory based on quantum theory of radiation and the classical laws of physics

•
$$\frac{K(Ze)(e)}{r^2} = \frac{mv^2}{r}$$

- $m_{NT} = \frac{nh}{2\pi}$ or $m_{NT} = nh$
- Electron remains in stationary orbit where it does not radiate its energy.
- Radius : $r = 0.529 \times \frac{n^2}{2} \text{Å}$

ATOMIC MODELS

- Thomson: An atom considered to be positively charged sphere where e is embedded inside it.
- Drawback: Cannot explain stability of an atom.
- Rutherford Model of an atoms :

Electron is revolving around the nucleus in circular path.

$$R_N = R_0(A)^{1/3}$$
, $R_0 = 1.33 \times 10^{-13}$ cm
[A = mass number, $R_N =$ Radius of nucleus]
SIZE OF NUCLEUS

- The volume of the nucleus is very small and is only a minute fraction of the total volume of the atom. Nucleus has a diameter of the order of 10⁻¹² to 10⁻¹³ cm and the atom has a diameter of the order of 10⁻¹ cm.
- Thus, diameter (size) of the atom is 1,00,000 times the diameter of the nucleus.

ELECTROMAGNETIC SPECTRUM

- RW→MW→IR→Visible→UV→X-rays→CR
 (Radiowaves →Microwaves →Infrared rays
 →Visible rays →Ultraviolet rays →X-rays
 →Cosmic rays)
- Wavelength decreases ______
- Frequency increases —
- • $c = v\lambda$ $\lambda = \frac{c}{v}$ $\overline{v} = \frac{1}{\lambda} = \frac{v}{c}$
 - •T = $\frac{1}{v}$ •E = $\frac{hc}{\lambda}$ = hv, h = 6.626 × 10⁻³⁴ Js
 - $E(ev) = \frac{12400}{\lambda(A)}$
 - •Total amount of energy transmitted $E = rhv = \frac{rhc}{\lambda}$

HYDROGEN SPECTRUM

· Rydberg's Equation :

$$\frac{1}{\lambda} = \overline{v} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \times Z^2$$

 $R_{H} \simeq 109700 \text{ cm}^{-1}$ = Rydberg constant

- For first line of a series n, = n, +1
- Limiting spectral line (series limit) means
 n = ∞

- Velocity: $v = 2.188 \times 10^6 \frac{Z}{n} \text{ms}^{-1}$
- Energy(KE + PE)
 - =Total energy = $-13.6 \times \frac{Z^2}{n^2}$ eV/atom
- TE = $-\frac{KZe^2}{2r}$, PE = $\frac{-KZe^2}{r}$, KE = $\frac{KZe^2}{2r}$ PE = -2KE, KE = -TE, PE = 2TE
- Revolutions per sec = $\frac{v}{2\pi r}$
- Time for one revolution = $\frac{2\pi r}{v}$
- Energy difference between n₁ and n₂ energy level

$$\Delta E = E_{n_2} - E_{n_1} = 13.6Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \frac{eV}{atom} = 1E \times \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

where IE = ionization energy of single electron species.

Ionization energy = E_w - E_{GS} = 0 - E_{GS}.
 E_{GS} = Energy of electron in ground state

DE-BROGLIE HYPOTHESIS

- All material particles posses wave character as well as particle character.
- $\lambda = \frac{h}{mv} = \frac{h}{p}$
- The circumference of the nth orbit is equal to n times of wavelength of electron i.e.,
 2π_z = nλ

Number of waves = n = principal quantum number

- Wavelength of electron $(\lambda) \cong \sqrt{\frac{150}{V(\text{volts})}} \dot{A}$
- $\lambda = \frac{h}{\sqrt{2mKE}}$

- H_a line means n₂ =n+1; also known as line of longest
 λ, shortest ν, least E
- · Similarly H_a line means n₃ = n₃ +2
- When electrons de-excite from higher energy level (n) to ground state in atomic sample, then number of spectral lines observed in the

spectrum =
$$\frac{n(n-1)}{2}$$

 When electrons de-excite from higher energy level (n₂) to lower energy level (n₂) in atomic sample, then number of spectral line observed in the spectrum

$$=\frac{(n_2-n_1)(n_2-n_1+1)}{2}$$

No. of spectral lines in a particular series
 n, -n,

HEISENBERG UNCERTAINTY

According to this principle, "it is impossible to measure simultaneously the position and momentum of a microscopic particle with absolute accuracy"

If one of them is measured with greater accuracy, the other becomes less accurate.

$$\Delta x \Delta p \ge \frac{h}{4\pi}$$
 or $(\Delta x)(\Delta v) \ge \frac{h}{4\pi m}$

where Δx =Uncertainty in position

Δp = Uncertainty in momentum

 $\Delta v = Uncertainty in velocity$

m = mass of microscopic particle

Heisenberg replaced the concept of orbit by that of orbital.

QUANTUM NUMBER

Principal Quantum number (By Bohr)

- ⇒ Indicates = Size and energy of the orbit, distance of e from nucleus
- ⇒ Values n = 1, 2, 3, 4, 5.....
- $\Rightarrow \text{ Angular momentum} = n \times \frac{h}{2\pi}$
- ⇒ Total number of e's in an orbit = 2n2
- ⇒ Total number of orbitals in an orbit = n²
- ⇒ Total number of subshell in an orbit = n

Azimuthal/Secondary/Subsidiary/Angular momentum quantum number (t)

- ⇒ Given by = Sommerfeld
- ⇒ Indicates = Sub shells/sub orbit/sub level
- ⇒ Values ⇒ 0, 1.....(n-1)
- ⇒ Indicates shape of orbital/Sub shell

Value of n	Values of <i>t</i> [Shape]	Initial from word
eg.	$\ell = 0$ (s) [Spherical]	Sharp
If $n = 4$	ℓ=1 [p] [Dumb bell]	Principal
	ℓ=2 [d] [Double dumb bell]	Diffused
	ℓ=3 [f] [Complex]	Fundamental

- ⇒ Total no. of e's in a suborbit = 2(21+1)
- ⇒ Total no. of orbitals in a suborbit = (21+1)
- ⇒ Orbital angular momentum

$$= \sqrt{\ell(\ell+1)} \frac{h}{2\pi} = \sqrt{\ell(\ell+1)} \ell$$

- h = Planck's constant
- ⇒ For H & H like species all the subshells of a shell have same energy.

i.e.
$$2s = 2p$$
 $3s = 3p = 3d$

- Magnetic Quantum number (m) ⇒ Given by Linde
 - ⇒ Indicates orientation of orbitals i.e. direction of electron density.
 - \Rightarrow Value of m = $-\ell$ 0....+ ℓ
 - ⇒ Maximum no of e's in an orbital = 2 (with opposite spin) m for p sub shell = p, p, p.

Spin Quantum Number (m. or s)

Given by Uhlenback & Goudsmit Values of $s = \pm \frac{1}{2}$

Total value of spin in an atom = $\pm \frac{1}{2}$ ×number of unpaired electrons

Spin Angular momentum = $\sqrt{s(s+1)} \frac{h}{2\pi}$

- Aufbau principle: The electrons are filled up in increasing order of the energy in subshells. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s²4f¹⁴5d¹⁰6p⁶7s²5f¹⁴6d¹⁰
- $(n + \ell)$ rule: The subshell with lowest $(n + \ell)$ value is filled up first, but when two or more subshells have same $(n + \ell)$ value then the subshell with lowest value of n is filled up first.
- Pauli exclusion principle: Pauli stated that no two electrons in an atom can have same values of all four quantum numbers.
- Hund's rule of maximum multiplicity: Electrons are distributed among the orbitals of subshell in such a way as to give maximum number of unpaired electrons with parallel spin.

THERMODYNAMICS

Deals with interaction of one body with another in terms of energy.

System: Part of universe under investigation.

Surrounding: Rest part of universe except system.

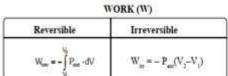
Boundary: Divide system & surrounding.

State function	Path function
Properties which depends only	Depends on
on initial & final state of system	path or process
& not on process or path.	
e.g. U, H etc.	e.g. work, heat

THERMODYNA	MIC PROPERTIES
Extensive	Intensive
Properties which are dependent	Properties which are
of matter (size & mass)	independent of matter
present in system	(size & mass) present in system

SYSTEM					
Open Closed isolated					
Energy and matter can exchange	Only energy can exchange	Neither energy nor matter			

Isothermal	Isochoric	Isobaric	Adiabatic	Cyclic	-1
T = const.	V = coust.	P = const.	No heat	Instal &	
23/65/10/09/95		4.5.00000000000000000000000000000000000	exchange	final state	
			dq = 0	of system	
				are same	


PROCESSES

Extensive Properties	Intensive Properties
Volume	Molar volume
Number of moles	Density
Mass	Refractive index
Free Energy (G)	Surface tension
Entropy (S)	Viscosity
Enthalpy (H)	Free energy per mole
Internal energy (E & U)	specific heat
Heat capacity	Pressure
Committee of the Commit	Temperature
	Boilling point, freezing point etc

Reversible process		9	Irreversible process	
•	Slow process		Fast process	
٠	At any time system and surrounding are in equilibrium	*	No equilibrium between system and surrounding	
•	$P_{vor} = P_{vor} \pm dP$		$P_{mn} = P_{max} = \Delta P$	

HEAT (q)

Energy ex	change due to te	mperature difference :
$q = C \Delta T$,	$q = nC_{\alpha}\Delta T$	$q = ms \Delta T$
C = heat ca	pacity	
Cm - mola	r heat capacity	
s – specific	heat capacity	
m = Amou	ut of substance	

INTERNAL ENERGY (E & U)

Every system having some quantity of matter is associated with a definite amount of energy internal energy.

$$\begin{split} U &= U_{\text{Kinetics}} + U_{\text{Potential}} + U_{\text{Electronic}} + U_{\text{mixies}} + \\ U \text{ is a state function & as an extensive property.} \\ \Delta U &= U_{\text{final}} - U_{\text{mixiel}} \\ \text{For a given closed system} \\ U &= g(T, V) \end{split}$$

SIGN CONVENTION system

FIRST LAW OF THERMODYNAMICS (FLOT)

Law of conservation of energy

 $\Delta U = q + W$

ENTHALPY

Chemical reactions are generally carried out at constant pressure (atmospheric pressure) so it has been found useful to define a new state function **Enthalpy** (H) as.

$$H = U + PV$$

$$\Delta H = \Delta U + \Delta (PV)$$

at constant pressure $\Delta H = \Delta U + P \Delta V$

combining with first law. $\Delta H = q_0$

RELATIONSHIP BETWEEN AH & AU

The difference between ΔH & ΔU becomes significant only when gases are involved (insignificant in solids and liquids) $\Delta H = \Delta U + \Delta (PV)$

If substance is not undergoing chemical reaction or phase change. $\Delta H = \Delta U + nR\Delta T$

In case of chemical reaction $\Delta H = \Delta U + (\Delta n)RT$

Process	Expression for w	Expression for q	ΔU	ΔН	Work on PV-graph
Reversible isothermal		$q = nRT \ln \left(\frac{V_2}{V_1}\right)$ $q = nRT \ln \left(\frac{P_1}{P_2}\right)$	0 process	0	
fandh samed	$w = -P_{ext} \left(V_2 - V_1 \right)$ $= -P_{ext} \left(\frac{nRT}{P_2} - \frac{nRT}{P_1} \right)$	THE PERSON IN MARKET	0	0	Pr. Unit Pr. V. V.
Isobaric process	$w = -P_{ext}(V_2 - V_1)$ $= -nR\Delta T$	$q = \Delta H = nC_P \Delta T$	$\Delta U = nC_{V}\Delta T$	$\Delta H = nC_P \Delta T$	The state of the s

	12	:			*I
Isochoric process	w = 0	$q = \Delta U = nC_{V}\Delta T$	$\Delta \mathbf{U} = \mathbf{n} \mathbf{C}_{\gamma} \Delta \mathbf{T}$	ΔH = nC _p ΔT	± may d
Reversible adiabatic process	$w = nC_{V}(T_{2} - T_{1})$ $= \frac{P_{2}V_{2} - P_{1}V_{1}}{\gamma - 1}$	$q = 0$ $PV^{\dagger} = constant$ $TV^{\dagger -1} = constant$ $TP^{1-\dagger \gamma} = constant$	80	$\Delta H = nC_p \Delta T$	P. Gorberts Adiabatic
Irreversible adiabatic process	$w = nC_{V}(T_{2} - T_{1})$ $= \frac{P_{2}V_{2} - P_{1}V_{1}}{\gamma - 1}$	$q = 0$ $nC_v(T_2 - T_1) =$ $-P_{ext}\left(\frac{nRT_2}{P_2} - \frac{nRT_1}{P_1}\right)$	$\Delta U = nC_{\nabla}\Delta T$	$\Delta H = nC_p \Delta T$	Rev Lotherns Rev Adiabatic
Polytropic	$w = \frac{P_2V_2 - P_1V_1}{n - 1}$ $w = \frac{R(T_2 - T_1)}{(n - 1)}$	$q = \int_{T_1}^{T_2} C_V dT$ $w = \frac{R(T_2 - T_1)}{(n-1)}$	$\Delta U = nC_{V}\Delta T$	$\Delta H = nC_P \Delta T$	n=1
Cyclic Process	Area encolsed in PV-diagram For clockwise it is -ive it is +ive	q = -w	0	0	

Entropy (denoted by S) is state function

In an irreversible process entropy of universe increases but it remains constant in a reversible process.

$$\Delta S = \int \frac{q_{nec}}{T}$$

$$\Delta S_{gg} + \Delta S_{gg} = 0$$
 for rev. process
 $\Delta S_{gg} + \Delta S_{gg} > 0$ for trev. process
 $\Delta S_{gg} + \Delta S_{gg} \ge 0$ (In general)

PHYSICAL SIGNIFICANCE OF ENTROPY

One can think entropy as a measure of the degree of randomness or disorder in a system. The greater the disorder in a system, the higher is the entropy.

(i) The entropies of substance follow the order,

- (ii) If more no. of gaseous moles are present on product side, Δ_rS will be +ive (since gas is more disordered than solid or liquid).
- (iii) Entropy rises with increasing mass, other thing being same e.g. atomicity in gas phase.

$$S^{\circ} = 203$$
 J/K-mole

$$S^{\circ} = 223$$
 J/K-mole

$$S^{\circ} = 245$$
 J/K-mole

(iv) Entropy increases with chemical complexity

For CuSO, nH,O

$$n = 0$$

$$n = 1$$

$$n = 3$$

■ ENTROPY CALCULATION

Process	ΔS _{Syx.}	ΔS _{Surr.}
Isothermal reversible	$\Delta S_{Syn} = nR/n \frac{V_2}{V_1}$	$\Delta S_{Sur.} = -\Delta S_{Sys.}$
sothermal	$\Delta S_{\text{Sys.}} = nR\ell n \frac{V_2}{V_1}$	$\Delta S_{Surt} = \frac{-q_{Sys}}{T} = \frac{W_{Sys}}{T} = \frac{-P_{ext}(V_2 - V_1)}{T}$
Adiabatic reversible	$\Delta S_{Syx} = 0$	ΔS _{Seer.} = 0
Adiabatic irreversible	$\Delta S_{Syn} = nC_{p}\ell n \frac{T_{2}}{T_{1}} + nR\ell n \frac{P_{1}}{P_{2}}$	$\Delta S_{Sur.} = 0$
Isochoric	$\Delta S_{Sys.} = nC_{\rm V} \ell n \frac{T_2}{T_1}$	$\Delta S_{Surr.} = -\Delta S_{Sys.}$
Isochoric	$\Delta S_{Sys.} = nC_V \ell n \frac{T_2}{T_1}$	$\Delta S_{Surr} = \frac{-q_{sys}}{T_{surr}} = \frac{-nC_V\Delta T}{T_{surr}}$

GIBBS FREE ENERGY (G) AND SPONTANEITY:

A new thermodynamic state function G, the Gibbs free energy is defined as :

$$G = H - TS$$

at constant temperature and pressure

$$\Delta G = \Delta H - T \Delta S$$

If $(\Delta G)_{T,P} < 0$ Process is irreversible (spontaneous) $(\Delta G)_{T,P} = 0$ Process is reversible $(\Delta G)_{T,P} > 0$ process is impossible (non spontaneous)

The equation $\Delta G = \Delta H - T \Delta S$ takes both the factors into consideration.

$(\Delta H_r)_{T,P}$	$(\Delta S_r)_{T,P}$	(ΔG _r)	Remarks
– ve	+ ve	Always -ve	Reaction is spontaneous
+ ve	- ve	Always +ve	Reaction non spontaneous
+ ve	+ ve	At low temperature, $\Delta G = + ve$	Non spontaneous
		At high temperature, $\Delta G = -ve$	Spontaneous
- ve	- ve	At low temperature, - ve	Spontaneous
– ve	– ve	At high temperature, + ve	Non spontaneous

THERMOCHEMISTRY

ENTHALPY OF REACTION (AH.,)

Amount of heat evolved or absorbed during a reaction at constant pressure.

ENTHALPY OF FORMATION (AH) (May be endothermic or exotherm ic)

Change in enthalpy when one mole of a substance is formed from its constituent elements present in standard state.

* For elements $\Delta_t H^0 = 0$ (for standard state) Ex. $\Delta_t H^0 [O_2(g)] = 0$, $\Delta_t H^0 = S_{1(i)conhic)} = 0$ $\Delta_t H^0 [P_{4 (v)ins}] = 0$, $\Delta_t H^0 = C_{(gmins)} = 0$

ENTHALPY OF COMBUSTION (A_cH) (always exothermic)

Change in enthalpy when 1 mole of a substance is completely burnt in oxygen.

$$\begin{split} C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell); & \Delta_cH_{[C_2H_6(g)]} \\ & \Delta_rH^o = \sum \Delta_cH^o(react.) - \sum \Delta_cH^o(prod.) \end{split}$$

Calorific value =
$$\frac{\Delta H_{comb}}{\text{molecular wt}}$$

ENTHALPY OF TRANSITION

Enthalpy change when one mole of one allotropic form changes to another.

$$C_{(graphite)} \rightarrow C_{(diamond)} \Delta_{tran} H^o = 1.9 \text{ kJ mol}^{-1}$$

 $H_2O_{(f)} \rightarrow H_2O_{(g)}, \Delta_{rap} H^o (H_2O_{(f)})$
 $H_2O_{(5)} \rightarrow H_2O_{(f)}, \Delta_{fin} H^o (H_2O_{(f)})$
 $H_2O_{(5)} \rightarrow H_2O_{(g)}, \Delta_{nb} H^o (H_2O_{(f)})$

LAWS OF THERMOCHEMISTRY

(1)
$$A \rightarrow B$$
 $\Delta_r H = x \text{ kJ mol}^{-1}$ Lavoisier & Laplace law

(ii) Hess Law of Constant Heat summation

BOND ENTHALPY

Average amount of enthalpy required to dissociate one mole gaseous bond into separate gaseous atoms

$$\Delta rH = \begin{pmatrix} Sum \text{ of bond enthalpy} \\ \text{of gaseous reactant} \end{pmatrix} - \begin{pmatrix} Sum \text{ of bond enthalpy} \\ \text{of gaseous product} \end{pmatrix}$$

RESONANCE ENERGY

$$\Delta H_{resonance}^{o} = \Delta_{i}H^{o}$$
 (experimental) - $\Delta_{i}H^{o}$ (calculated)
= $\Delta_{C}H^{o}$ (calculated) - $\Delta_{C}H^{o}$ (experimental)

ENTHALPY OF NEUTRALIZATION (ΔH_{aeut}) (Always exothermic)

Change in enthalpy when one gram equivalent of an acid is completely neutralized by one gequivalent of a base in dilute solution.

$$SA + SB \rightarrow salt + water ; \Delta H^{\circ}_{seat}$$

 $H^{+}_{(sq)} + OH^{-}_{(sq)} \rightarrow H_{2}O_{1}$;
 $\Delta H = -13.7 \text{ kCal eq}^{-1} = 57.3 \text{ kJ eq}^{-1}$

In case of weak acid / base or both $|\Delta H_N^o| < 13.7 \frac{\text{Kcal}}{\text{eq}}$ and the difference is enthalpy of ionisation of ionisation of weak species except in case of HF when $|\Delta H_N| > 13.7$ due to hydration of F⁻.

ENTHALPY OF ATOMISATION (AH (always endothermic)

Change in enthalpy when one mole of gaseous molecules converts into gaseous atoms.

ENTHALPY OF SOLUTION (AH, a)

(may be endo or exothermic)

Change in enthalpy when 1 mol of a substance is dissolved in excess of water so that further dilution does not involve any heat change.

$$CLSO_{4(a)} \xrightarrow{aq} CLSO_{4(aq)}; \Delta H_{(aq)}^{p}$$

ENTHALPY OF HYDRATION (AH hydra) (always exothermic)

Enthalpy change when 1 mole of anhydrous salt combine with requisite amount of water to form hydrated salt.

$$CuSO_{4(s)} + 5H_2O_{(r)} \rightarrow CuSO_4.5H_2O_{(s)}; \Delta H_{hyd}^o$$

(hydra.salt)

ENTHALPY OF HYDROGENATION (ΔH_{hydro}) (Always exothermic)

Enthalpy change during the complete hydrogenation of one mole unsaturated organic compound into its saturated compound.

unseturated organic compound
$$(= \text{ or } = \text{ bond}) \xrightarrow{\Delta} \text{ softwarded organic compound} \\ C_2H_2 + 2H_2 \rightarrow C_3H_6; \Delta H_{trylor}$$

NOTE:

If in a reaction heat of reactant & products are given then heat of that reaction can be measured as follows:

(a) For heat of combustion & for bond enthalpy

$$\Delta_r H = \sum (\Delta H_C)_{reactant} - \sum (\Delta H_C)_{product}$$

(b) For heat of formation

$$\Delta_r H = \sum (\Delta H_f)_{product} - \sum (\Delta H_f)_{reactant}$$

CHEMICAL EQUILIBRIUM

- Equilibrium represents the state of a process in which the measurable properties like: temperature,
 pressure, color, concentration of the system do not show any change with the passage of time.
- Equilibrium is a dynamic process, chemical equilibrium can be approached from both sides.
- The state of equilibrium is not affected by the presence of catalyst. It only helps to attain the
 equilibrium state in less or more time.
- Equilibrium can be attained both in homogeneous & heterogenous system.

Consider a reversible reaction.

$$aA + bB \xrightarrow{A} cC + dD$$

(AT EQUILIBRIUM STATE)

Rate of forward reaction (r.)

- rate of backward reaction (r.)

So, at equilibrium,

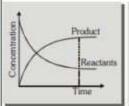
$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b} = \frac{K_l}{K_b}$$
 In ter

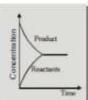
In terms of active mass

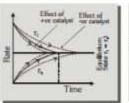
$$K_{p} = \frac{[P_{C}]^{c}[P_{D}]^{d}}{[P_{A}]^{a}[P_{B}]^{b}}$$

In terms of partial

pressure


$$K_{X} = \frac{\left[X_{C}\right]^{\epsilon} \left[X_{D}\right]^{d}}{\left[X_{A}\right]^{\epsilon} \left[X_{B}\right]^{b}}$$


In terms of mole


fraction artial pressure of solid is taken a

- Partial pressure of solid is taken as unity & in calculation of partial pressure of solids, their number of moles are not considered.
- While determining An take only gaseous species.
- The active mass of solid & pure liquid is a constant quantity (unity) because it is an intensive property.

GRAPHS)

Unit of Equilibrium constant:

$$K_C = (\text{mol } L^{-1})^{\Delta n_g} : K_P = (\text{atm})^{\Delta n_g}$$

- · Application of Ke or K,
 - More is the value of K_p or K_c more is the extent of reaction.
 - Stability of reactant increases when value of K decreases
 - Stability of Product increases when value of K increases.

(CHARACTERISTICS OF EQUILIBRIUM CONSTANT)

Equilibrium constant depends upon temperature & way of writing the reaction

(i) Temperature :

Let K_1 & K_2 be equilibrium constant at T_1 & T, then

$$Log\left(\frac{K_2}{K_1}\right) = \frac{\Delta H^0}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

(Van't Hoff equation)

(ii) Way of writing the reaction :

For $A+B \rightleftharpoons C+D$ $K_c = K$ then

(a)
$$C+D \Longrightarrow A+B$$
; $K'_C = \frac{1}{K}$

(b) nA+nB == nC+nD, K_C = Kⁿ

Predicting the direction of reaction :

Reaction Quotient (Q) is expressed in the same way as for equilibrium constant, except that the concentrations may not necessarily be at equilibrium.

In general for the reversible reaction :

$$aA + bB \Rightarrow cC + dD$$

$$Q = \frac{[P_a]^a [P_b]^d}{[P_A]^a [P_B]^b}$$
 (in terms of pressure)

If Q = K_{se} then system is in equilibrium

If $Q > K_{sq}$ then system proceed in backward direction to attain equilibrium.

when
$$n=2$$
, then $K_c^2 = K^2$

$$n = \frac{1}{2}$$
 then $K_{c}^{u} = K^{1/3}$

$$B \rightleftharpoons C$$
 $K_c = K$

$$C \rightleftharpoons D$$
 $K_r = K_s$ then

$$A \rightleftharpoons D$$
 $K_c = K_1 \times K_2 \times K_3$

(d)
$$A \rightleftharpoons B$$
 $K_c = K_1$

$$D \rightleftharpoons C$$
 $K_c = K_s$ then

$$A \rightleftharpoons D$$
 $K_C = \frac{K_1}{\sqrt{K_2 \cdot K_3}}$

If $Q < K_{\omega_0}$ then system proceed in forward direction to attain equilibrium.

Degree of dissociation (α)

No. of moles of reactant dissociated No. of mole of reactant present initially

Degree of Dissociation from Vapour pressure

$$n_1A \rightleftharpoons n_2B + n_3C$$

$$\alpha = \frac{n_1}{\Delta n} \left(\frac{D_T - D_0}{D_0} \right)$$
; $\Delta n = (n_2 + n_3) - (n_1)$

D_T = theoretical vapour density = Molecular weight

D. = Observed vapour density

LE-CHATELIER'S

PRINCIPLE

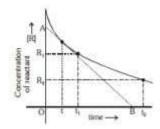
If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature then the equilibrium is shifted in such a way as to nullify the effect of change.

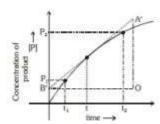
Le-Chatelier's principle is applicable for both chemical and physical equilibrium.

(CHEMICAL EQUILIBRIUM)

S. No.	Effect due to change in		Δn _z =0 A⇌B	Δn _z > 0 A⇌2B	Δn _z < 0 2A→B
a)	Concentration (i) \uparrow [A] (ii) \downarrow [A]		Forward direction Backward direction	Forward direction Backward direction	Forward direction Backward direction
b)	Pressure	(i) ↑ in pressure (ii) ↓ in pressure	Unchanged Unchanged	Backward direction Forward direction	Forward direction Backward direction
c)	Temperature	(i) ↑ in Endothermic (ii) ↑ in Exothermic		Forward direction Backward direction	Forward direction Backward direction
d)	Dissociation	(i) ↑ in pressure (ii) ↑ in volume	Unchanged Unchanged	Dissociation Decreases Dissociation Increases	
e)	Mixing of mert gas	(i) at constant P (ii) at constant V	Unchanged Unchanged	Dissociation Increases Unchanged	Dissociation Decreases Unchanged

CHEMICAL KINETICS


- Rate of reaction (ROR) = Rate of disappearance of reactant (appearance of products)
 Stoichiometric coefficient of reactant (products)
- For a reaction :


$$aA + bB \longrightarrow cC + dD$$

Instantaneous rate : $-\frac{1}{a} \left(\frac{d[A]}{dt} \right) = -\frac{1}{b} \left(\frac{d[B]}{dt} \right) = \frac{1}{c} \left(\frac{d[C]}{dt} \right) = \frac{1}{d} \left(\frac{d[D]}{dt} \right)$

Relationship between rate of reaction and rate of disappearence of reactant (rate of appearance of product).

- Average rate : $-\frac{1}{a} \left(\frac{\Delta |A|}{\Delta t} \right) = -\frac{1}{b} \left(\frac{\Delta |B|}{\Delta t} \right) = \frac{1}{c} \left(\frac{\Delta |C|}{\Delta t} \right) = \frac{1}{d} \left(\frac{\Delta |D|}{d\Delta t} \right)$
- ⇒ Graphical method for determining rate :

Avg. Rate =
$$-\left(\frac{[R]_2 - [R]_1}{t_2 - t_1}\right) = \frac{([P]_2 - [P]_1)}{t_2 - t_1}$$

➤ Important kinetic expression for reaction of type A → B

Order	Zero	1st	2nd	nth
Differential rate law	Rate = k	Rate= k[A]	Rate = $k[A]^2$	Rate = $k[A]^{a}$
Integrated rate law	$[A_0]$ – $[A]$ = kt	$kt = \ln \frac{[A]_0}{[A]}$	$kt = \frac{1}{ A } - \frac{1}{ A _0}$	$kt = \frac{1}{(n-1)} \left[\frac{1}{ A ^{n-1}} - \frac{1}{ A _{\alpha}^{n-1}} \right]$
Half life (t _{1/3})	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{\ln 2}{k}$	$t_{1/2} = \frac{1}{ A _0 k}$	$t_{1/2} = \frac{1}{k(n-1)} \left[\frac{2^{n-1}-1}{(A_0)^{n-1}} \right]$
(t _{3/4})	t ₃₄ =1.5 t _{1/2}	t _{3/4} = 2 t _{1/3}	$t_{34} = 3 t_{1/2}$	$t_{34} = (2^{t-1} + 1) t_{1/2}$

Graphs of various order

Order	Rate vs [A]	[A] vs t	log [A] vs t	1 vs t
Zero order	Rate	[A]	log [A]	1 N
First order	Rate	[A]	log [A]	
Second order	Rate	TA CONTRACTOR	log [A]	†

- > Temperature dependence :
- Arrhenious equation : $k = A e^{-E_B RT}$
- E₄ = minimum energy over and above the avg. energy of reactant which must be possessed by reacting molecule for collision to be successful.

$$\ln k = \ln A - \frac{E_x}{RT}$$

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_E} \right]$$

Solid State

Packing efficiency

= Volume occupied by two spheres in the unit cell Total volume of the unit cell × 100

- Mass of the atoms of unit cell = Number of atoms in a unit cell (Z) × Mass of atom (M_{atom})
- Mass of one atom = $\frac{\text{Molar mass }(M)}{\text{Avogadro's constant }(N_A)}$
- Density (ρ) of unit cell of a cubic crystal = $\frac{ZM}{V \times N_A} = \frac{ZM}{a^3 N_A}$
- Bragg's equation: 2d sinθ = nλ
- Number of octahedral voids = No. of particles present in the close packing
- Number of tetrahedral voids = 2 × No. of octahedral voids

Characteristics of Different Types of Unit Cells

Crystal	No. of atom(s)/ unit cell	Packing efficiency	C.No.	Relation in d, a and r
scc	1	52.4%	6	r = d/2 = a/2
bcc	2	68%	8	$r = d/2 = \sqrt{3}a/4$
fcc	4	74%	12	$r = d/2 = a/2\sqrt{2}$

Void	Radius Ratio	
Triangular	0.155≤r+/r < 0.225	
Tetrahedral	0.225 ≤ r+/r < 0.414	
Octahedral	0.414≤r+/r-<0.732	
Body-centred cubic	0.732≤r+/r-<1	

Solids on the Basis of Electrical Properties

- Conductors: Electrical conductivity, 10⁴ to 10⁷ ohm⁻¹ m⁻¹
- Insulators: Electrical conductivity, 10⁻²⁰ to 10⁻¹⁰ ohm⁻¹ m⁻¹
- Semiconductors: Electrical conductivity, 10⁻⁶ to 10⁴ ohm⁻¹ m⁻¹
 - n-type semiconductors: Group 14 elements doped with group 15 elements, free electrons increase conductivity.
 - p-type semiconductors: Group 14 elements doped with group 13 elements, holes increase conductivity.

Solutions

• Molality
$$(m) = \frac{M}{\rho - \frac{MM_2}{1000}}$$
 • Molarity $(M) = \frac{n_1}{(n_1M_1 + n_2M_2)/\rho}$

- Henry's law: p_A = K_H·x_A: K_H increases with increase of temperature implying that solubility decreases with increase of temperature at the same pressure.
- Raoult's law: p₁ = p₁*x₁, this law is applicable only if the two
 components form a homogeneous mixture.
- Dalton's law of partial pressure: p_{total} = p₁ + p₂ + ... p_n and for two components system, p_{total} = p₁ + (p₂ - p₁)x₂

Ideal and Non-Ideal Solutions

Ideal Solutions	Non-ideal Solutions	
$p_1 = x_1 p_1^{\circ}; p_2 = x_2 p_2^{\circ}$	$p_1 \neq x_1 p_1^{\circ}; p_2 \neq x_2 p_2^{\circ}$	
$\Delta H_{\text{mix}} = 0, \Delta V_{\text{mix}} = 0$	$\Delta H_{\text{mix}} \neq 0, \Delta V_{\text{mix}} \neq 0$	
A - B interactions = $A - A$	$A - B$ interactions $\neq A - A$	
and B - B interactions.	and B - B interactions.	

Non-ideal Solutions Showing Positive and Negative Deviations from Raoult's Law

Solutions showing	Solutions showing		
positive deviation	negative deviation		
A - B << A - A or B - B	A - B >> A - A or $B - B$		
interactions.	interactions.		
$\Delta H_{\text{mix}} > 0, \Delta V_{\text{mix}} > 0$	$\Delta H_{mix} < 0, \Delta V_{mix} < 0$		
$p_1 > p_1^* x_1^*$	$p_1 < p_1^* x_1$		

Colligative Properties

- Relative lowering of vapour pressure: $(p_A^* p_A)/p_A^* = x_B$
- Elevation in boiling point: ΔT_b = T_b T_b^o = K_bm
- Depression in freezing point: ΔT_f=T^o_f T_f=K_fm
- Osmotic pressure :π = CRT = (n/V)RT

van't Hoff Factor and its Significance

 $i = \frac{\text{Observed value of colligative property}}{\text{Calculated value of colligative property}}$

- For association of solute: nA → (A)_n
 Degree of association (α) = (1-i) n/n-1; i<1
- For dissociation of solute: (A)_n → nA
 Degree of dissociation (α) = i 1/n 1; i > 1
- Modified colligative properties:

 $p_A^* - p_A/p_A^* = ix_B; \Delta T_b = iK_b m; \Delta T_f = iK_f m; \pi = iCRT$

Ionic Equilibrium

The concept of ionic equilibria as equilibria involving ions in solution

- Arrhenius theory of electrolytes.
- (ii) Ostwards dilution law for weak electrolyte $K_a = \left(\frac{\alpha^2}{1-\alpha}\right)\left(\frac{1}{V}\right)$
- (iii) Acid & Bases
- (a) Arrhenius H⁺/OH⁻ theory.
- (b) Bronsted lowery protonic concept.
- (c) Lewis concept electronic concept of acids and bases.

Some basic concept

pH scale: $pH = -\log[H^{+}]$.

- (i) Water as amphiprotic solvent.
- (ii) Autoionization of water : K_w =[H⁺][OH⁻].
- (iii) $K_a[H_2O] = K_w/[H_2O]$
- (iv) Change in pH of neutral H2O with temperature.

Homogenons Ionic equilibria

- (i) Acid/base equilibrium
- (a) Strong acid $[H^+]=c/2+\sqrt{\frac{c^2+K_w}{4}}$; c=conc. of (acid)
- (b) pH due to polyprotic weak acids
- (c) Weak monobasic acid $[H^+] = K_a.c$ (if $\alpha < 0.1$)
- (d) Mixture of S.A. & W.A.
- (e) Mixture of two W.A. $[H^+]= K_1c_1 + K_2c_2$
- (f) Buffer solutions : $pH = pK_a + log \left(\frac{salt}{acid}\right)$ $pOH = pK_b + log \left(\frac{salt}{base}\right)$

$$pOH = pK_b + log \left(\frac{san}{base} \right)$$

(g) Salt hydrolysis – (W.A.&S.B) pH= $\frac{1}{2}$ (pK_w+ pK_a+ loge)

(W.B & S.A.) pH =
$$\frac{1}{2}$$
 (pK_w-pK_b - logc)

(W.A. & W.B.)
$$pH = \frac{1}{2}(pK_w + pK_u - pK_b)$$

Heterogenons equilibria

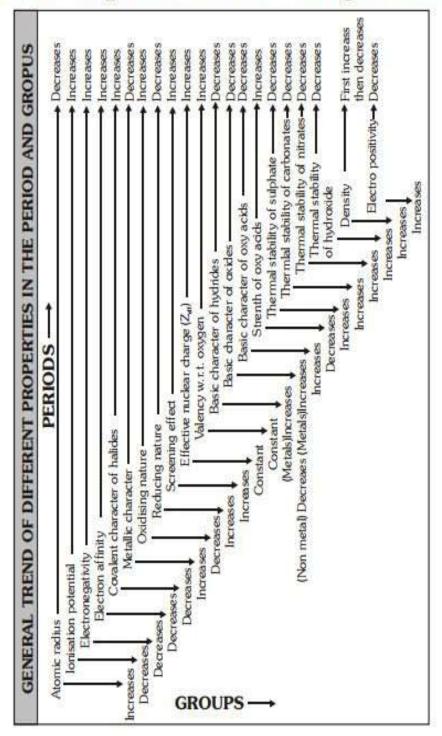
Solubility of sparingly soluble salt's (AB, AB_2 , A_xB_y) $K_{sp} = (S^{x+y})X^xY^y$ (i) Effect of pH on solubility.

- (ii) Simultaneous solubility.

Application of both heterogenous and homogenous equilibrium

- Extent of hydrolysis in buffer solution.
- (ii) Change in solubility due to complex formation.
- (iii) Solubility and hydrolysis.

Inorganic chemistry Classification of elements


1. CLASSIFICATION OF ELEMENTS

1 H			PE	RI	0D	IC	TA	BL	E ()F	ELI	EM	EN	TS			2 He
3 Li	4 Be											5 B	C C	7 N	8	9 F	10 Ne
11 Na	Mg											Al	Si	15 P	16 S	CI CI	18 Ar
19 K	Ca Ca	SC Scotor	ZZ Ti	V	Cr	Mn	Fe Fe	CO Comm	Ni Ni	Cu	30 Zn	31 Ga	Ge	33 As	Se	35 Br	36 Kr
Rb	38 Sr	39 Y	40 Zr	41 Nb	Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	Sn	Sb	52 Te	53 	Xe
CS Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	Hg	81 TI Delive	Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	Ra Ra	89 Ac	104 Rf	105 Db	Sg	Bh	108 Hs	109 Mt	Ds	III Rg	112 Cn	113 Nh	FI	115 Mc	116 Lv	117 Ts	118 Og

•	Ce	59 Pr	Nd	100	0.00		Gd		50.00			200	70 Yb	
••	500	91 Pa	100	93 N p	5.00	500	101	0.77	224	100	100	101 Md	1000	100

Classification of elements

Some Important Increasing Order

Periodicity:

Repetition of properties after regular interval is known as periodicity and these properties are known as periodic properties.

- 1 Effective Atomic Number
- 2 Atomic Radius
- 3 Ionisation Potential
- 4 Electron Affinity
- 5 Electro Negativity

ATOMIC RADIUS

Distance between centre of nucleus to outermost electron:

Accurate value of atomic radius cannot be measured therefore operational definations are used.

- Covalent radius (i)
- Metallic radius (ii)
- (iii) Vander Waal's radius

r < r entitle < r

Vander wall radius mainly used for noble gases.

Electron affinity & Electron gain enthalpy:

Electron affinity	Electron gain enthalpy
$A_{tal} \xrightarrow{+s^{-}} A_{tal}$	A _{1d} + e⁻
amount of energy	Change in enthalpy
released when an e*	when an e" is added to
is added to isolated	isolated gaseous atom.
gaseous atom.	$\Delta H_{pq} = H_p - H_R$

Successive electron affinity:

$$A_{(g)} \xrightarrow{tA_1} A_{(g)}^- \xrightarrow{tA_2} A_{(g)}^{2-} \xrightarrow{tA_2} A_{(g)}^{3-}$$

 EA_1 is generally exothermic except N, Be, Mg and Noble gas
 EA_2 : EA_3 always endothermic

Factors affecting:

- EA x Z
- (2) EA a-
- size Nature of subshell
- half and full filled

Periodic trend:

- Generally decreases on moving down the group
- Generally increase when moving left to right in the period.

Note: Ille period element having greater EA than Ilnd period element except alkali metal. O < Te < Se < S ,

1 < Br < F < Cl

Note : IEA = EAA.

and EA = IEA.

Electronegativity:

Tendency to attract shared pair of e* towards itself in covalent bond.

Factors affecting:

- (1) EN ∞ Z.
- EN ∝ (-)charge
- EN x(+)charge.
- EN = % s-characters of hybrid orbital

Periodic trend:

- Generally decreases on moving down the group
- Generally increase when moving left to right in the period.

Application of electronegative

- Polarity of bond
 - ΔEN = 0 non-polar bond
 - ΔEN ≠ 0 polar bond
- Bond parameter
 - AEN1 Ionic character ?
 - **DENT** bond length ↓
- AEN? bond strength 1 Nature of oxide & oxyacid:
- E.N. of central atom increase acidic character of oxide and oxyacid increases.

Some Important Increasing Order

1. Abundance of Elements

- (i) Elements on earth crust Fe, Al, Si, O
- Ca, Fe, Al (ii) Metals on earth crust
- (iii) Non-metals - Si. O In atmosphere - O. N - He, Si, H In universe

2. Atomic / Ionic Size

(i) Mg2+, Na+, F-, O2-, N3-

(Hint: Isoelectronic series)

- (ii) Ca2+, Az, Ch, S2-
- (iii) O, C, S, Se
- (iv) B. Be, Li, Na
- (v) F.O.F.O

3. Ionization Energy

- (i) Na, Al, Mg, Si
- (ii) Li, B, Be, C, O, N, F, Ne, He (1*1.P.)
- (iii) Be, C, B, N, P, O, Ne, He, Li (II1d I.P.)

4. Electron Affinity

- (i) 1, Br. F. Cl.
- (ii) Cu, Aq, Au (EA, of Au is very high = 222 kJ mol*)
- (iii) O. S. F. CI
- (iv) N. P.O. S

5. Electonegativity

- (i) As, P.S. CI
- (ii) I, Br, Cl, F
- (iii) C. N. O. F

6. Hydration of Ions/Hydration Energry

- (i) Ba+1, Sr+1, Ca+1, Mg+1, Be+1
- (ii) Cs+, Rb+, K+, Na+, Li+
- (iii) Na+, Mg+5, Al+6

7. Ionic Radii in water

- (i) Cs*, Rb*, K*, Na*, Li*
- (ii) Li+, Be+1
- (iii) Na+, Mg+2, Al+8

8. Molar Conductivity in Water

Li*, Na*, K*, Rb*, Cs*

INCREASING ORDERS

- 1. Decreasing ionic size Mg²⁺< O²⁻< Na⁺< F⁻
- 2. Increasing acidic property ZnO< Na₂O₂< P,O,< MgO
- 3. Increasing first ionization potential Mg< Al< Si< Na
- 4. Increasing bond length F, < N, < Cl, < O,
- 5. Increasing size Cl-< S 1-< Ca1+< Ar
- 6. Increasing acid strength HClO₄< HClO₄< HCIO.< HCIO
- 7. Increasing bond strength HCI< HBr< HF< HI
- 8. Increasing oxidation number of iodine 1.< HI< HIO < ICI
- 9. Increasing thermal stability HOCI< HOCIO, < HOCIO, < HOCIO
- 10. Increasing bond enthalpy N, < O, < F, < Cl,
- 11. Increasing acidic character CO, < N,O, < SiO, < SO,
- 12. Increasing ionic size N^{i-<} N_B+< F⁻<
 O²⁻< Mg²⁺
- 13. Increasing basic character MgO< SrO< K,0< Ni0< Cs,0
- 14. Increasing extent of hydrolysis CCl₄< MgCl, < AlCl, < PCl, < SiCl,

- 27. Increasing solubility Mg(OH), < Ca(OH), < Ba(OH),
- 28. Increasing basicity Be(OH), < Mg(OH), < Ca(OH), < Ba(OH),
- Increasing hydration of ions Be^{2+<} Mg^{2+<} Ca^{2+<} Sr^{2+<} Ba²⁺
- 30. Increasing reactivity with water Be< Mg< Ca< Sr< Ba
- 31. Increasing reactivity towards air Be< Mg< Ca< Sr< Ba
- 32. Increasing solubility BeSO₄< MgSO₄< CaSO < SrSO < BaSO
- 33. Increasing ionic character BCI,< AlCI,< GaC1,
- 34. Increasing strength of Lewis acid wBF,< BCl, < BBr,
- 35. Increasing strength of Lewis acid AlCl,< GaCl, < InCl,
- 36. Increasing reducing power GeCl,< SnCl, < PbCl,
- 37. Increasing oxidizing power GeCl.< SnC1 < PbC1
- 38. Increasing number of bybrid orbitals of C < Sic Sn

- Be(OH), 51. Increasing stability of oxoacids H,SO, 5 H,SeO, < H, TeO,
 - 52. Increasing electron affinity F<CI<Br<1
 - 53. Increasing reducing power HF< HCI< HBr< HI
 - 54. Increasing affinity for hydrogen F,< Cl,< Br,<1,
 - 55. Increasing acidity HF< HCI< HBr< HI
 - 56. Increasing melting point HF< HCI< HBr< HI
 - 57. Increasing boiling point HF< HCI<
 - 58. Increasing stability HFO, HCIO, < HBrO, < HIO,
 - 59. Increasing covalent character TiCL< TiCl, TiCl,
 - 60. Increasing magnetic moment Ti7*< Ni2* < Cr2* < Co2* < Zn2*
 - 61. Increasing ionic character VCI,< VCI,< VCI,
 - 62. Increasing electropositivity Hg< Na< Cu< Li
 - 63. Increasing density Fe< Pb< Al< Au
 - 64. Increasing basic characteristics Li.O<

- Increasing strength of hydrogen bonding (X....H–X) O< S< F< CI< N
- Increasing ionic radii in water Li* < Na* <
 K⁺ < Rb⁺ < Cs⁺
- Increasing molar conductivity in water Li*< Na*< K*< Rb*< Cs*
- Increasing reactivity with water Li< Na< K< Rb< Cs
- Increasing reactivity with hydrogen Li
 Na< K< Rb< Cs
- 20. Increasing melting point Li< Na< K< Rb<Cs
- Increasing basic nature of hydroxides LiOH< NaOH< KOH< RbOH< CsOH
- Increasing thermal stability of hydroxides LiOH
 NaOH
 KOH
 RbOH
- Increasing covalent character LiCI
 LiBr
 LiI
- Increasing ionic character CaCl₂ SeCl₂ MgCl₂ BaCl₂ SrCl₃
- Increasing solubility BeCO_i MgCO_i CaCO_i BaCO_i
- 26. Increasing solubility BeF₂< MgF₂< CaF₃< BaF₃
- 80. Increasing basicity $F^- < CI^- < Br^- < I^-$
- 81. Increasing basic strength F*< OH*</p>
 NH₁*< CH₁*
- Increasing boiling point NH₁< PH₁
 AsH₁< ShH₁
- 83. Increasing ionization energy B<C<N<O
- 84. Increasing thermal stability BeCO₁ < MgCO₂ < CaCO₂ < BuCO₃
- 85. Increasing paramagnetism Ca< Al< N< O
- 86. Increasing ionic character LiBr< NaBr</p>
 KBr< RbBr< CsBr</p>

- Increusing basic character NH₃
 AsH₃
 SbH₂
 PH₃
- Increasing thermal stability NH₃< AsH₃< SbH₄< PH₃
- Increasing acidic strength HNO₃<H₂PO₄
 H₂AsO₄<H₃SbO₄
- 42. Increasing solubility in water HNO₁<H₂PO₂<H₃AsO₄<H₅SbO₄
- 43. Increasing order of +5 oxidation state N<P<As<Sh and Bi
- Increasing extent of hydrolysis NCl₃
 PCl₂
 AsCl₃ SbCl₃
 BiCl₄
- 45. Increasing stability of hydrides H₂O<
- H₂S< H₂Se< H₃Te

 46. Increasing poisonous nature H₂S< H₂Se<
 H₃Te< H₄Po
- 47. Increasing acidic strength H₂O< H₂S< H₂Te
- Increasing strength of oxoacids H₂SO₃
 H₂SeO₃
 H₃TeO₃
- Increasing stability of oxoacids H₂SO₁
 H₂SeO₂
 H₂TeO₃
- Increasing strength of oxoacids H₂SO₄ = H₂SeO₂ < H₂TeO₄
- 87. Increasing hydration energy $Be^{2+} < Mg^{2+} < Ca^{2+} < Ba^{2+} < Sc^{2+}$
- 88. Increasing bond angle NH3< PH3< AsH3
- 89. Increasing bond angle NF₃< PH₃< AsF₃
- Increasing bond angle H₂O< H₂S< H₃Se
 Increasing bond angle NF₃< NCl₃
- 92. Increasing bond angle NO, '< NO, < NO,
- 93. Increasing bond angle NH,< NF,
- 94. Increasing bond angle PH₁< PF,
- 95. Increasing electronegativity O*< O< O*

- 64. Increasing basic characteristics Li₂O
 BeO < B₂O₂ < CO₂
- 65. Increasing electronegativity As< P< S< Cl
- 66. Increasing ionization energy N< O< F
- 67. Increasing atomic size S< O< Se< C
- 68. Increasing acidity HOCK HOBK HOI
- Increasing density H₂S< O₂< CO₂< NH₃< H₄
- Increasing thermal stability HF< HCI
 HBr< HI
- Increasing bond enthalapy N₂< O₂< F₂< Cl₂
- Increasing melting point CaF₂< CaCl₂
 CaBr₂< Cal₂
- 73. Increasing oxidizing power O< S< Se< Te
- 74. Increasing oxidizing power F< Cl< Br< 1
- 75. Increasing size B< Be< Li< Na
- Increasing single bond length N − N< O – O< F • F
- Increasing stability of hydrides LiH
 NaH< KH< CsH
- Decreasing pH of aqueous solution of LiCL< BeCl₂< MgCl₂< AlCl₄
- Increasing acidic exide Al 2O₃< MgO
 SiO₃< P 4O₁₀
 - Decreasing dipole moment: CH₂Cl
 CH₂Cl₂
 CHCl₃ and CCl₄
 - Decreasing ionic nature: MCI< MCI< MCI,
 - Increasing strength of H-bonding: O
 F< CI< S & N
 - Increasing N O bond length: NO₂*< NO₂ and NO₃ —
- 100, Increasing bond order: $N_2 \le F_3 \le O_3 \le O_3 \le O_3$

Chemical bonding

VALENCE SHELL ELECTRON PAIR REPULSION THEORY

- Given by Nyholm & Gillespie to define shape of molecule.
- Shape of molecule define on the basis of electron pairs orientation present on central atom.
- Electron pairs present on central atom repel each other therefore these electron pair occupy such position on central atom; where they experience minimum repulsion at maximum possible distance three dimensionally
- Order of replusion: [p-lp > lp-bp > bp-bp | mb-mb > mb-sb > sb-sb] we weither boost, w ample to
 TYPE OF HYBRIDISATION & POSSIBLE STRUCTURE

pe of Hybridisation	No. of B.P.	No. of L.P.	Shape	Examples
sp-bybridisation	2	- 2	Linear	BeF, CO, CS, BeCl,
(a) sp ² -hybridisation (b) sp ² -hybridisation	3 2	i	Trigonal planer V-shape,Angular	BF ₃ , AlCl ₃ , BeF ₃ ⁻ NO ₂ ⁻ , SO ₂ , O ₃
(a) sp ³ -hybridisation (b) sp ³ -hybridisation (c) sp ³ -hybridisation	4 3 2	0 1 2	Tetrohedral Pyramidal V-shape Angular	CH, CCL, PCL, CIO, T. NH, BF, SO, A. AICL, NH, PF, CIO, H,O', PCL, XeO, N(CH,), CH, H,O, NH, OF, CI,O, SF, I,
(a)sp ³ d-hybridisation (b) sp ³ d-hybridisation (c) sp ³ d-hybridisation (d) sp ³ d-hybridisation	5 4 3 2	1 2 3	Trigonal bipyramidal See-Saw, folded square distorted tetrahedral almost T-shape Linear	PCI, SOF, AsF, SF, PF, AsF, SkF, XeO,F, CIF, ICI, 1, Br, ICI, CF, XeF,
(a)-sp ² d ² -hybridisation (b)-sp ² d ² -hybridisation (c)-sp ² d ² -hybridisation	6 5 4	1 2	Square hipyramidal/octahadral Square pyramidal/distorted octahedral Square planar	PCL, SF, XeOF, CF, SF, XeF, XeF,
(a) sp [*] d*-hybridisation (b) sp [*] d*-hybridisation (c) sp [*] d*-hybridisation	7 6 5	i 2	Pentagonal bipyramidal distorted octahedral /capped octahedral Pentagonal planar	F, XeF ₄ XuF ₅

DIPOLE MOMENT

Measurement of Polarity in a molecule

$$\vec{\mu} = q \times d$$
 debye = esu-cm
 $1D = 10^{-16}$ esu.cm

(A) Identification of polar or Non-polar molecule.

Molecule: Symmetrical distribution of electron cloud- Non-polar. Molecule: Unsymmetrical distribution of electron cloud- Polar.

Diatomic Molecule

(a) Homoatomic ΔEN = 0 → μ = 0 → Non-polar

H, F, C, N, etc.

(b) Heteroatomic ΔEN ≠ 0 → ji_{se}= 0 → polar

HF > HCl > HBr > HI

Polyatomic molecule:

μ_s → Vector sum of bond moment

 $\mu_{e} - \psi \mu_{1}^{2} + \mu_{2}^{2} + 2\mu_{1}\mu_{2} \cos \theta$

Important Order

 $NH_3 > NI_3 > NBr_3 > NCl_3 > NF_3$

NH₂>SbH₂>AsH₃>PH₃

H,0 > H,S

CH,CI > CH,F > CH,Br > CH,J

CH,CI > CH,CI, > CHCI, > CCI,

Applications

Predict shape and polarity of molecule Symmetrical geometry $\rightarrow \mu=0 \rightarrow$ non-polar Unsymmetrical geometry $\rightarrow \mu \neq 0 \rightarrow$ polar Distinguish between cis & trans form

Dipole moment in Aromatic Compounds

Orthodichloro

notadichloro

paradichion benzene

 $\mu x \frac{1}{\text{bond angle}}$

SOLUBILITY

For s-block

same group cation depends upon Lattice Energy and Hydration Energy

Increasing order of solubility

- (i) BaCO₃, SrCO₃, CaCO₃, MgCO₃, BeCO₃
- (ii) Be(OH)2, Sr(OH)2, Mg(OH)2, Ca(OH)2, Ba(OH)2
- (iii) BaSO, SrSO, CaSO, MgSO, BeSO,
- (iv) Li,CO₂, Na,CO₂, K,CO₃, Rb,CO₃, CsCO₃
- (v) LiOH, NaOH, KOH, RbOH, CsOH
- (vi) LiF, LiCl, LiBr, Lil
- (vii) LiF, NaF, KF, RbF, CsF
- (viii) BaF2, SrF3, MgF2, CaF3, BeF2
- (ix) CaF2, CaCl2, CaBr2, Cal2

For all solubility $= \frac{1}{\text{cov. char.}}$

solubility in org. solvent xcov. charx ionic char

[CCI, benzene, ether, alcohol, acetone]

Eg. (i) PbF, > PbCl, > PbCl, > Pbl,

(Anion size[↑], cov. char. ↑, solubility ↓)

(ii) Fe⁻²(OH), > Fe⁻²(OH),

(+) charge↑, PP↑, CC↑, solubility ↓

(iii) ZnCl₂ > CdCl₂ > HgCl₂

Z. ↑, PP↑, CC ↑, solubility ↓

(iv) Na,SO, > MgSO,

(+)charge↑, PP↑, CC↑, solubility ↓

(v) ZnCl2 > CdCl2 > HgCl2

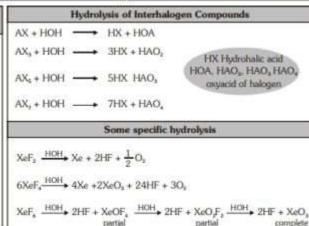
Z_↑, PP↑, CC ↑, solubility ↓

(vi) NaCl > CuCl

PP1, CC 1, solubility ↓

(vii) AgF > AgCl > AgBr > AgI

Anionic Size↑, PP↑, CC↑, solubility ↓


Hydro - Water lysis - break down

Break down of a molecule through water and formation of new product is known as hydrolysis.

O it is nucleophilic substitution reaction.

extent of hydrolysis «	15th Group Halides	
$BeCl_g + 2HOH \rightarrow Be(OH)_g + 2HCI$ $BCl_g + 3HOH \rightarrow B(OH)_g + 3HCI$	BF ₃ + 3HOH → B(OH) ₆ + 3HF 3BF ₃ + 3HF → 3H [BF ₄] 4BF ₃ + 3H ₄ O → 3H[BF ₄]	NF₂ + HOH
$AICI_3 + 3HOH \rightarrow AI(OH)_3 + 3HCI$ $SICI_4 + 4HOH \rightarrow SI(OH)_4 + 4HCI$ $SF_4 + H_2O \rightarrow No hydrolysis$ due to crowding $CCI_4 + HOH \xrightarrow{\text{ordinary}} No hydrolysis$	(partially hydrolysis) Similarly SiF ₄ + 4HOH → Si(OH) ₄ + 4HF 2SiF ₄ + 4HF → H ₂ *[SiF ₄] ²⁻ hydrolysis followed by Lewis acid-base reaction.	AsCl ₃ + HOH As(OH) ₃ + 3HCl SbCl ₃ + HOH SbOCl + 2HCl (partial hydrolysis) BiCl ₃ + HOH BiOCl + 2HCl (partial hydrolysis) PCl ₅ + HOH POCl ₅ PCl ₆ + HOH POCl ₇ Partial completely

Hydrolysis of higher covalent character containing salt Be₂C + 4HOH → 2Be(OH)₂ + CH₄ Mg₂C₃ + 4HOH → 2Mg(OH)₂ + C₂H₄ CaC₂ + 2HOH → Ca(OH)₂ + C₂H₂ Al₄C₃ + 12HOH → 4Al(OH)₂ + 3CH₄ Mg₂N₂ + 6HOH → 3Mg(OH)₂ + 2NH₃ AlN + 3HOH → Al(OH)₂ + NH₃ Ca₂P₂ + 6HOH → 3Ca(OH)₂ + 2PH₂ LiH + HOH → LIOH+H₂

Some Important Increasing Order

1. Acidic property

- (i) SiO₂, CO₂, N₂O₃, SO₃
- (ii) MgO, Al₂O₂, SiO₂, P₂O₁₀

CaH₂ + 2HOH --- Ca(OH)₂ + H₂

- (iii) HCIO, HCIO, HCIO, HCIO,
- (IV) CH, NH, H,O, HF
- (v) SiH, PH, H,S, HCI
- (vi) H.O. H.S. H.Se. H.Te
- (vii) HF, HCl, HBr, HI
- (viii) InCl₂, GaCl₂, AlCl₃ (ix) BF₃, BCl₃, BBr₂, BI₂
- 2. Bond Angle
 - (i) CH, C,H, C,H,
 - (ii) H,O, NH, CH, CO,
 - (iii) H₂O, NH₃, CH₄, BH₃
 - (iv) NO2-, NO2, NO2+
 - (v) H,Se, H,S, H,O
 - (vi) AsH, PH, NH,
 - (vii) PF₂, PCl₂, PBr₂, Pl₂

5. Ionic Character

- (i) LiBr, NaBr, KBr, RbBr, CsBr
- (ii) LiF, NaF, KF, RbF, CsF
- (iii) BeCl., MgCl., CaCl., SrCl., BaCl.
- (IV) BCL, AICL, GaCL,
- (v) VCI, VCI, VCI,
- (vi) AlF₂, MgF₂, NaF
- (vii) AIN, AI₂O₂, AIF₃
- (viii) HI, HBr, HCl, HF
- (ix) CuCN, AgCN
- (x) AgCl, KCl

6. Oxidizing Power

- (i) Cr₂O₃²⁻, MnO₄⁻
- (ii) MnO₄ MnO₄
- (iii) WO₃, MoO₂, CrO₂
- (iv) GeCl, SnCl, PbCl,
- (v) I2, Br2, Cl2, F2
- (vi) Zn*2, Fe*2, Pb2*, Cu2*, Ag*

- (viii) NF, NCL
- (bx) NF₂, NH₃, NCl₃
- (x) OF2, OH2, CLO

3. Basic Character

- (i) LiOH, NaOH, KOH, RbOH, CoOH
- (ii) Be(OH),,Mg(OH),,Ca(OH),,Ba(OH),
- (iii) BeO, MgO, CaO, SrO
- (N) NiO, MgO, SrO, K,O, Cs,O
- (v) CO,, B,O, BeO, LL,O
- (vi) SiO, Al,O, MgO, Na,O
- (vii) SbH, AsH, PH, NH,
- (viii) F-, OH-, NH,-, CH,-

4. Thermal Stability

- (i) Li,CO, Na,CO, K,CO, Rb,CO, Cs,CO,
- (ii) BeCO., MgCO., CaCO., BaCO.
- (iii) Be(OH)₂, Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂Polarisation
- (iv) LiOH, NaOH, KOH, RbOH, CsOH
- (v) BeSO, MgSO, CaSO,
- (vi) CsH, RbH, KH, NaH, LiH
- (vii) SbH₂, AsH₃, PH₃, NH₃
- (viii) H,Te, H,Se, H,S, H,O
- (ix) HI, HBr, HCl, HF

7. Melting Point

- (i) Cs, Rb, K, Na, Li
- (ii) Mg. Ba, Sr, Ca, Be
- (iii) Cal, CaBr, CaCl, CaF,
- (iv) BeCl₂, MgCl₂, CaCl₂, SrCl₂, BaCl₂
- (v) Nal, NaBr, NaCl, NaF
- (vi) CoCl. RbCl. KCl, NaCl
- (vii) AlCl., MgCL, NaCl

8. Density

- (i) Na, Al, Fe, Pb, Au
- (ii) Li, K, Na, Rb, Cs
- (iii) Ca, Mg, Be, Sr, Ba
- (iv) Highest Density = Os/Ir
- (v) Lowest density = H
- (vi) Metal of lowest Density = Li

9. Boiling Point

- (i) PH, AsH, NH, SbH,
- (ii) H,S, H,Se, H,O
- (iii) HCl, HBr, HI, HF
- (iv) NH, HF, H,O
- (v) He, Ne, Ar, Kr
- (vi) H,O, D,O
- (vii) H., Cl., Br.

10. Electrical Conductivity

Cr. Pt. Fe, Al, Au, Cu, Ag

11. Reactivity with water

- (i) Li, Na, K, Rb, Cs
- (iii) Be, Mg, Ca, Sr, Ba

12. Extent of Hydrolysis

- (i) CCI, MgCI, AlCI, SiCI, PCI.
- (ii) BiCl₂, SbCl₃, AsCl₃, PCl₃, NCl₃

13. Bond Strength

- (i) HI, HBr, HCl, HF
- (ii) \$ 1, \$ Br, \$ Cl, \$ F
- (iii) N-N, N=N, N=N
- (N) As-H, Sb-H, P-H, N-H
- (v) N2, N2, N2, N2, N2
- (vi) O2-, O2-, O2 , O2+, O2+

Lil, LiBr, LiCl, LiF NaI, NaBr, NaCl, NaF CsCl, RbCl, KCl, NaCl BaO, SrO, CaO, MgO

- (vii) F., H., O., N.,
- (viii) NO-, NO, NO+
- (ix) I, F, Br, Cl,
- (x) 0-0, S-5
- (xi) F-F, O-O, N-N, C-C, H-H

16. Strength of Hydrogen bonding (X...H-X)

- (i) S, CI, N, O, F
- (ii) NH₂, H₂O, HF

17. Reactivity with Hydrogen

- (i) Cs, Rb, K, Na, Li
- (ii) Ba, Sr, Ca, Mg, Be

18. Reactivity Towards Air

Be, Mg, Cs, Sr, Ba

19. Bond Length

- (i) N₂, O₂, F₂, Cl₂
- (ii) N-N, C-N, C-C
- (m) co, ç-o, -ç-o-
- (iv) NO+, NO, NO-
- (v) O₂, O₂, H₂O₂ (O-O bond length)
- (vi) CO, CO2, CO2
- (vii) N, N, N, N,
- (viii) O.+2, O., O., O., O.
- (ix) HF, HCI, HBr, HI

14. Reducing Power

- (i) PbCl₂, SnCl₂, GeCl₂
- (ii) HF, HCl, HBr, HI
- (iii) Ag, Cu, Pb, Fe, Zn
- (iv) HNO, H,SO, H,S
- (v) H_PO, H_PO, H_PO,

15. Covalent Character

- (i) LiCl, BeCl2, BCl3, CCl4
- (ii) SrCl₂, CaCl₂, MgCl₂
- (iii) TiCl2, TiCl2, TiCl4
- (iv) LiCl, LiBr, Lil
- (v) Na₂O, Na₂S
- (vi) AIF, Al₂O₃, AIN
- (vii) HF, HCl, HBr, HI

20. Dipole moments

- (i) CCI, CHCI, CH,CI, CH,CI
- (ii) NF₃, NH₂, H₂O, HF
- (iii) Cis-chloropropene, Trans-chloropropene
- (iv) p, m, o-dichlorobenzene
- (v) CH,I, CH,Br, CH,F, CH,Cl
- (vi) NH2, SO2, H2O, HF
- (vii) H2S, H2O
- (viii) HI, HBr, HCl, HF
- (ix) PH2, ASH2, SbH2, NH2
- (x) H,O, H,O,

Group 15	Bond angle	Group 16	Bond angle
NH ₃	107°48	H ₂ O	104°28
PH ₃	93°36	H ₂ S	9200
AdH ₃	91°48	H ₂ Se	91∞
SbH ₃	91°18	H ₂ Te	90.5°°

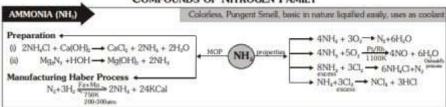
NITROGEN FAMILY

- 1. Nitrogen and phosphorus are non-metals, arsenic and antimony metalloids and bismuth is a typical metal.
- 2. Except nitrogen all the elements show allotropy.
- Bismuth hardly forms any compound in -3 oxidation state.
- The only well characterised Bi (V) compound is BiF₅.
- In the case of nitrogen, all oxidation states from +1 to +4 tend to disproportionate in acid solution. For example,
 - (i) 3HNO₂ → HNO₃ + H₂O + 2NO
- In case of phosphorus nearly all intermediate oxidation states disproportionate into +5 and -3 both in alkali and acid.
- The oxides of the type E₂O₃ of nitrogen and phosphorus are purely acidic, that of arsenic and antimony amphoteric and those of bismuth predominantly basic.
- 8. In case of nitrogen, only NF, is known to be stable.
- 9. Trihalides except BiF, are predominantly covalent in nature.
 - ⇒ The only well characterised Bi (V) compound in BiF_a
 - ⇒ All the oxidation states from +1 to +4 tend to disproportionate in acidic solution :

 \Rightarrow All the intermidiate oxidation states disproportionate into +5 and -3

$$4H_9PO_3 \xrightarrow{\Delta} 3H_9PO_4 + PH_9$$

 $H_3PO_2 \xrightarrow{\Delta} H_3PO_4 + PH_9$


⇒ Hydride of 15th group elements :

 $\begin{aligned} & \text{NH}_{_3} > \text{PH}_{_3} > \text{AsH}_{_3} > \text{SbH}_{_3} \geq \text{BiH}_{_3} & \text{Basic character} \\ & \text{NH}_{_3} > \text{PH}_{_3} > \text{AsH}_{_3} > \text{SbH}_{_3} > \text{BiH}_{_3} & \text{Stability} \\ & \text{PH}_{_3} < \text{AsH}_{_3} < \text{NH}_{_3} < \text{SbH}_{_3} < \text{BiH}_{_3} & \text{Boiling Point} \\ & \text{PH}_{_3} < \text{AsH}_{_3} < \text{SbH}_{_3} < \text{NH}_{_3} & \text{Melting Point} \\ & \text{NH}_{_3} > \text{PH}_{_3} > \text{AsH}_{_3} > \text{SbH}_{_3} & \text{Bond Energy} \end{aligned}$

- ⇒ Périta oxide of 15th group element is acidic. N₂O₃, P₂O₃ are acidic, As₂O₃, So₂O₃ are amphotenic with Bi₂O₃ is basic.
- ⇒ Trihalide of 15th group elements are covalent except BiF₃ Oxides of Nitrogen

Name	Formula	Oxidation state of nitrogen	Common methods of preparation	Physical appearance and chemical nature
Dinitrogen oxide [Nitrogen oxide]	N_1O	+1	NH,NO, $\xrightarrow{\text{Heat}}$ N ₂ O + 2H ₂ O	Colouriess gas, neutral
Nitrogen monoxide [Nitrogen (II) oxide]	NO	+2	2NaNO ₂ + 2FeSO ₄ + 3H ₂ SO ₄ →Fe ₂ (SO ₄) ₅ + 2NaHSO ₄ + 2H ₂ O + 2NO	Colourless gas, neutral
Dinitrogen trioxide [Nitrogen (III) oxide]	N,O,	+3	$2NO + N_2O_4 \xrightarrow{250K} 2N_2O_5$	Blue solid, acidic blue liquid (-30°C
Nitrogen dioxide [Nitrogen (IV) oxide]	NO,	+4	2Pb(NO ₃) ₂ 673K 4NO ₂ + 2PbO + O ₂	brown gas, acidic
Dinitrogen tetroxide [Nitrogen (IV) oxide]	N ₂ O ₄	+4	2NO _z Cool N _z O ₄	Colourless solid/ liquid, acidic
Dinitrogen pentaoxide [Nitrogen(V) oxide]	N,O,	+5	$\begin{aligned} 4\text{HNO}_1 + P_4\text{O}_{14} \\ &\rightarrow 4\text{HPO}_1 + 2\text{N}_2\text{O}_1 \end{aligned}$	colourless solid, acidic

COMPOUNDS OF NITROGEN FAMILY

NITRIC ACID (HNO,)

Prepration:

Ostwald's process :

(i)
$$4NH_1(g) + 5O_2(g) \xrightarrow{Priffly graph collision} + 4NO(g) + 6H_2O(g)$$

(ii)
$$2NO(g) + O_2(g) \xrightarrow{} 2NO_2(g)$$

(iii)
$$3NO_1(g) + H_1O(\ell) \longrightarrow 2HNO_1(aq) + NO(g)$$

Properties:

HNO3, nitric acid was earlier called as aqua fortis (meaning strong water).

It usually acquires yellow colour, due to its decomposition by sunlight into NO.

It acts as a strong oxidising agent.

Reaction with FeSO,:

$$FeSO_4 + 8 HNO_3 \rightarrow Fe_2(SO_4)_3 + 2NO + 4H_2O$$

Reaction with non-metals:

Non-metals converted into highest oxyacids by hot and conc.

HNO, NO, gas is evolved (S to H, SO, P to H, PO, C to H₂CO₃, I₂ to HIO₃, As to H₂AsO₄. Sb to H₃SbO₄ and Sn to H₂SnO₃). Most of the metals except noble metals are attacked by HNO₃. It plays double role in action on metals, i.e., it acts as an acids as well as an oxidising agent.

Reaction with metals:

$$\begin{split} 3\text{Cu} + 8 \text{ HNO}_3 & \text{(dilute)} \rightarrow 3\text{Cu(NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O} \\ \text{Cu} + 4\text{HNO}_3 & \text{(conc.)} \rightarrow \text{Cu(NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O} \\ 4\text{Zn} + 10\text{HNO}_3 & \text{(dilute)} \rightarrow 4 \text{ Zn(NO}_3)_2 + 5\text{H}_2\text{O} + \text{N}_2\text{O} \\ \text{Zn} + 4\text{HNO}_3 & \text{(conc.)} \rightarrow \text{Zn(NO}_3)_2 + 2\text{H}_2\text{O} + 2\text{NO}_2 \end{split}$$

Concentration of nitric acid	Metal	Main products
	Mg. Mn	H ₂ + metal nitrate
Very Dilute HNO,	Fe, Zn, Sn	NH4NO3 + metal nitrate
	Cu, Ag, Hg	No reaction
Dilute HNO,	Fe, Zn	N _s O + metal nitrate
	Pb, Cu, Ag	NO + metal nitrate
Conc. HNO ₃	Sn	NOz + HzSnOz (Metastannic acid)
Conc. HNO,	Fe, Co, Ni, Cr, Al	rendered passive

PHOSPHINE (PH,)

Preparation:

(i) Ca,P₂ + 6H,O → 3Ca(OH)₂ + 2PH₃ (ii) PH₃I + NaOH → NaI + H₂O + PH₃ Laboratory preparation :

P. + 3NaOH + 3H,O -+3NaH,PO, + PH,

Uses:

As Holme's signals in deep seas and oceans. For the production of smoke screens.

Physical properties:

Colourless gas having smell of garlic or rotten fish, slightly soluble in water and slightly heavier than air.

Chemical properties:

(i) 2PHs + 4Oz -- PrOs + 3HsO (ii) 4PH, 713K P4 +6H. (jii) PHs + 4Cls -- PCls + 3HCl

d-BLOCK (Transition Elements)

DEFINITION

Transition elements are those d-block elements which has partialy filled (n-1)d subshell either in their ground state or in their stable oxidation states. Therefore Zn, Cd & Hg - are d-block elements but not transition elements.

GENERAL ELECTRONIC CONFIGURATION

Exceptions
$$\begin{cases} Cr = 4s^{1} \ 3d^{6} \\ Cu = 4s^{1} \ 3d^{10} \ , Pd = 5s^{6}4d^{10} \end{cases}$$

TRANSITION SERIES

3d series
$$Sc_n - Zn_n$$

4d series $Y_n - Cd_n$

$$9 + 1 = 10$$

 $9 + 1 = 10$
 $9 + 1 = 10$

rd 5d series
$$La_{yr}Hf_{yy}-Hg_{yy}$$
 $9+1=10$
rd 6d series $Ac_{gr}Unq_{yy}-Uub_{yy}$ $9+1=10$

ATOMIC RADIUS

3d series $Sc > Ti > V > Cr > Mn \ge Fe = CO = Ni \le Cu < Zn$

In a group 3d to 4d series increases but 4d and 5d series nearly same due to poor shielding of f electron. (Lanthanide contraction)

3d < 4d = 5d

e.g.:
$$Ti < Zr = Hf$$
 | Smallest radius - Ni | Largest radius - La

Melting point :s-block metals < d-block metals

In a series on increasing number of unpaired e-mpt increases and therefore m.p. increase upto Cr then decreases.

$$\begin{aligned} & \text{Melting point} & | Zn > Cd > Hg \\ & Cu > Ag \leq Au \end{aligned} & \text{(data based)}$$

E.N. Exception Zn < Cd < Hg

Density: s-block metals < d-block metals.

3d series

$Sc < Ti < V < Cr < Mn < Fe < Co \le Ni < Cu > Zn$

Density in a Group 3d < 4d << 5d

Metallic character: They are solid, hard, ductile, malleable, good conductor of heat and electricity and exhibit metallic lusture, high tensile strength. Hg is liquid

OXIDATION STATE

Transition elements exhibit variable oxidation state due to small energy difference of ns and (n-1)d electrons.

- Sc(+3) and Zn(+2) exhibit only one oxidation
- п Common oxidation state is +2 & +3
- In 3d series highest oxidation state is +7 (Mn)
- n In d-block series highest oxidation state is +8
- In carbonyl compound the zero oxidation state of o metals is stablize by synergic effects.
- Their higher oxidation states are more stable in fluoride and oxides.
- Higher oxidation states in oxides are normally more stable than fluorides due to capability of oxygen to form multiple bonds.
 - eg. stable fluoride in higher oxidation state of Mn is MnF, while oxide is Mn,O,
- Mn show maximum number of oxidation state (+2 to +7) among 3d series.
- Beyong Mn trihalide are not observe except FeX_3 (X = CI/Br/I) & CoF₃
- V2O3 V2O4 3 basic
- V₂O₅ amphoteric
- basic Cr.O. CO amphoteric basic
- CiO, acidic
- MnO MnO. = amphoteric basic
- Mn₂O₂
- Cul, does not exist

$$Cul_2 \longrightarrow Cul + \frac{1}{2}l_2$$

In aqueous Cu* disproportinated into Cu & Cu+2

In p-block lower oxidation states of heavier elements are more stable while in d-block heavier element, higher oxidation state are more stable.

eg. In VIB gp Mo(+6) & W(+6) are more stable than Cr(+6)

Important reactions of d-block elements

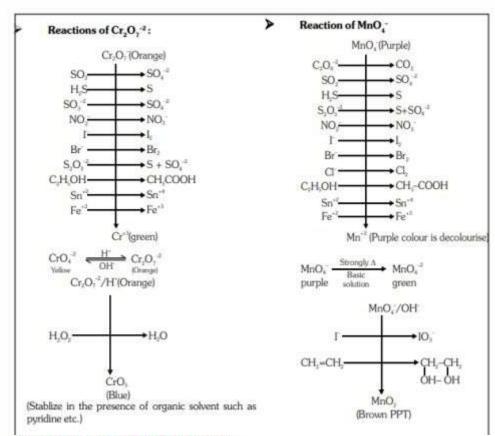
- (a) $Cu^{2+} + 4l^{-} \longrightarrow Cu_{2}l_{2pq} + l_{2}$
- (b) CuSO₄ + KCN → K,SO₄ + Cu(CN)₂

 $2Cu(CN)_2 \longrightarrow 2CuCN + \frac{(CN)_2}{CN}$

CuCN + 3KCN --- K,[Cu(CN),]

(c) Cu → H₂O+CO₂ → CuCO₃ ·Cu(OH)₂

(d) $AgNO_3(s) \xrightarrow{Homes} Ag + NO_2 + \frac{1}{2}O_2$ $AgCO_3(s) \xrightarrow{Hudrey} Ag + CO_2 + \frac{1}{2}O_2$ (e) $CuSO_4.5H_2O \xrightarrow{100^{\circ}C} CuSO_4.H_2O \xrightarrow{210^{\circ}C} CuSO_4$

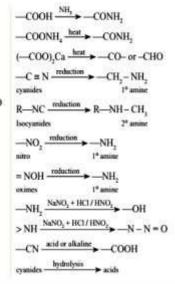

 $\xrightarrow{720^{\circ}C}$ $CuO + SO_2 + \frac{1}{2}O_2$

- (f) $Hg_2Cl_2 + NH_4OH \longrightarrow Hg < NH_2 + Hg$
- $Au \xrightarrow{\text{Asserting}} H[\text{AuCl}_4] + \text{NOCl} + \text{H}_2\text{O} \quad \text{(g)} \quad \text{NO}_3^- / \text{NO}_2^- \xrightarrow{\text{FisSO}_4 + \text{H}_2\text{NO}_6} \rightarrow \left[\text{Fe}(\text{H}_2\text{O})_c \, \text{NO}^+\right] \text{SO}_6$

(h) $AgBr + 2Na_2S_2O_3 \longrightarrow Na_3[Ag(S_2O_3)_2] + NaBr$ Photographic complex

(i) Chemical volcano:

 $(NH_a)_a Cr_a O_v \xrightarrow{\Delta} N_u + 4H_a O + Cr_a O_s$


IMPORTANT REAGENTS AND MIXTURES

Ammonal	Al powder + NH ₂ NO ₃ [used as an explosive]	Benedict solution	A solution of CuSO ₄ 5H ₂ O 1 NaOH	Carbogen	O ₂ (90-95%) + CO ₂ (5-10%) [used for arti-
Amatol	NH ₄ NO ₃ (80%) + trini- trotoluene (20%) [used as an explosive]		+ sodium citrate [used for detecting alde- hydes]	Coal gas	ficial respiration] H ₂ (47%) + CH ₄ (32%) + CO (7%) + N ₃ (4%)
Aqua regia	Cone. HNO ₃ + cone. HCl (1:3) [used as a laboratory reagent]	Baeyer reagent	Alkaline KMnO ₄ solu- tion [used for detecting ethylene and acetylene		$+ C_3H_4 (3\%) + C_2H_3$ $(2\%) + CO_2 (1\%) +$ other gases (4%) [used
Bordeaux mixture	A solution of CuSO ₄ + lime [used to kill moulds and fungi on plants]	Baking powder	linkages] NaHCO ₃ + sodium potassium tartarate		to produce reducing atmosphere in metal- lurgical operations]
Black ash	Na,CO, + CaS [impure Na,CO, obtained in Leblanc process]	Carbon oil	Vegetable oil + lime water [used for treat- ment of burns]	Euchlorine Fusion mixture	Cl ₂ + ClO ₂ Na ₂ CO ₃ + K ₂ CO ₃ [used as a laboratory reagent]
Freezing mixture Fehling	NaCl + ice [used for lowering temperature] CuSO_5H_O + NaOH +	Milk of magnesia	An aqueous suspension of Mg(OH), [used as a antacid]	Rectified spirit	C ₂ H ₃ OH (95.87%) + H ₂ O (4.13%) [used as a solvent]
solution	sodium potassium tar- tarate [used for detect- ing aldehydes]	Methylated spirit	Rectified spirit (85-90%) + CH ₂ OH (10-15%) + pyridine +	Super phos- phate of lime Sublimated	Ca(H,PO,) + CaSO, [used as a fertilizer] PbO + PbSO, + ZnO
Fenton reagent	H ₂ O ₂ + few drops of FeCl.		acetone [used as a solvent]	white lead Sorel's	[used as a white paint] MgO + MgCl, [used
Gun powder	KNO, (75%) + S (12%)	Matte	Cu,S + FeS	cement	as a substitute for tiles]
	+ charcoal (13%) [used as an explosive]	Nitrophos	Ca(H,PO ₂) ₂ + Ca(NO ₃) ₂ [used as a fertilizer]	Sodalime	NaOH + Ca(OH) ₂ [used in decarboxylation
Granite	Mica + rock + clay +	Nitrolim	CaCN ₂ + graphite	(00000000000000000000000000000000000000	of carboxylic acids]
Gobar gas	sand CH ₄ + CO + H ₅ [used as	Nitro chalk	[used as a fertilizer] NH ₄ NO ₁ + CaCO ₁	Soda bleach	Na ₂ O ₂ + HCl [used for bleaching of fabrics]

Named reactions in Organic chemistry

Name	Starting Material	Reaction Condition	Products
Aldel condensation	Aldehyde having α-hydrogen atom	conc. NaOH	aldol & ketol
Benzoin condensation	aromatic aldehyde	KCN	benzoin
Beckmann rearrangement	aromatic ketoxime	180-200°C, PCl, or P ₄ O _m or SO ₂ Cl ₂ or H ₂ SO ₄	N-substituted acetamide
Coupling reaction	C _s H ₃ NNC1 + phenol (or aniline)	NaOH (in case of phenol), HCI (in case of aniline) NaOH	Azo dye
Claisen condensation	(aldehyde, ketone or ester Containing α-hydrogen atom) + (aromatic alde- hyde or ketone)		unsaturated aro-matic aldehyde or ketone
Clemmensen reduction	aldehyde or ketone	Zn/Hg + conc HCl	hydrocarbon
Carbylamine reaction	primary amine	CHCl ₃ + NaOH	carbylamine
Cannizzaro reaction n	aldehyde not having α-hydrogen atom	aq. KOH or alc. KOH	alcohol & acid
Diels-Alder reaction	 α, β-unsaturated carbonyl compound + conjugated diene 	100°C	cyclic addition product
Diazotization	aromatic primary amine	NaNO/conc. HCl, 0 - 5°C	C,H,NNCI
Etard reaction	toluene	CrO,CL/Cs,	benzaldehyde
Friedel-Craft reaction	C ₄ H ₄ + RX (or RCOCI)	anhy. AlCl ₃	alkyl & acyl benzene
Fitting reaction	aryl halide	Na/dry ether	diphenyl
Gattermann-Koch reaction	C,H, + CO + HCI	anhy. AICI,	aromatic aldehyde
Gattermann reaction	C,H,NNCI	Cu powder + HCl	halobenzene
Hunsdiecker reaction	Ag salt of carboxylic acid + Br,	CCI, 80°C	alkyl or aryl bromide
Hofmann mustard oil reaction	primary aliphatic amine + CS ₂	HgCl ₂	$CH_3CH_2-N=C=S$ (mustard oil)
Hoffmann bromamide reaction	acid amide	Br,/NaOH	primary amine
Hell-Volhard-Zelinsky reaction	carboxylic acid having α-hydrogen atom	Br/red P	α-halogenated carbox- ylic acid
Haloform reaction	CH,CHO, methyl ketone	NaOH/X ₂ or NaOX	haloform
Kolbe-Schmidt reaction	C,H,OH	CO ₂ , 125°C, 4-7 atm, H*	salicylic acid
Colbe electrolytic reaction	alkali metal salt of carboxylic acid	electrolysis	alkane, alkene & alkyne
.ibermann nitroso reaction	secondary amine	NaNO/HCI	RN-N=0
Mendius reaction	alkyl or aryl cyanide	Na/C,H,OH	primary amine
Meerwein-Poundorf verley eduction	ketone	$[(\mathrm{CH_{3}})_{2}\mathrm{CHO}]_{2}\mathrm{Al} + (\mathrm{CH_{3}})_{2}\mathrm{CHOH}$	sec. alcohol
Perkin condensation	aromatic aldehyde + (CH ₃ CO) ₂ O	CH ₃ COONa, H*/H ₂ O	α, β-unsaturated are matic acid
Rosenmund reduction	acid chloride	H, Pd/BaSO, S, Boiling xylene	aldehyde
Reamer-Tiemann reaction	phenol	NaOH + CHCl ₃ or CCl ₄ , dil. HCl	salicylaldehyde or sali cylic acid
Stephen reaction	alkyl cyanide	SnCl/HCl	aldehyde
Schotten-Baumann reaction	(phenol or aniline or alcohol) + C _e H _e COCl	NaOH	benzoylated product
Sandmeyer reaction	C.H.NNCI	CuCl/HCl or CuBr/HBr or CuCN/ KCN, heat	halo or cyano-benzene
Sabatier-Senderens reaction	unsaturated hydrocarbon	raney Ni/H., 200-300°C	alkane
Illmann reaction	iodobenzene + Cu	heat	diphenyl
Wurtz -Fitting reaction	alkyl halide + aryl halide	Na/dry ether	alkyl benzene
Williamson synthesis	alkyl halide + sodium alkoxide or sodium phenoxide	heat	ether

IMPORTANT FORMULAE OF REPLACEMENT OF GROUPS

1. Acetylation

$$\begin{array}{cccc} C_6H_5COCl & + & HOCH_2CH_3 & \xrightarrow{Aq.NaOH} & C_6H_5COOCH_2CH_3 & + & HCl \\ Benzoyl \ chloride & Ethyl \ alcohol & Ethyl \ benzoate & & Ethyl \ benzoate & & & & & \end{array}$$

2. Wurtz FittigReaction

3. Wurtz Reaction

$$CH_3$$
— $Br + 2 Na + Br$ — CH_3 — CH_3 — CH_3 — CH_3 + 2 NaBr
Methyl bromide

4. Wolff-Kishner Reduction

$$R - CH = O \xrightarrow{NH_2NH_2} - H_2O \xrightarrow{Hydrazone} [R - CH = NNH_2] \xrightarrow{KOH, glycol} R - CH_3 + N_2$$
Aldehyde

5. Wiliamsons Reaction

6. Stephen Reaction

$$SnCl_2 + 2 HCl \longrightarrow SnCl_4 + 2 [H]$$

$$CH_{3}C \equiv N+2 \ [H] + HCl \xrightarrow{Dry \ ether} CH_{3}CH = NH.HCl$$

$$Acetonitrile \qquad \qquad CH_{3}CH = NH.HCl$$

$$Acetaldimine \ hydrochloride$$

$$\downarrow \ Boiling \ H_{2}O$$

$$CH_{3}CH = O + NH_{4}Cl$$

$$Acetaldehyde$$

7. Swarts Reaction

$$\begin{array}{cccc} CH_3Br & + \ AgF & \stackrel{\Delta}{\longrightarrow} & CH_3F & + \ AgBr \\ \text{Bromomethane} & & Fluoromethane & \end{array}$$

8. Schmidt Reaction

$$C_6H_5COOH \xrightarrow{N_3H} C_6H_5-NH_2 + CO_2 + N_2$$
Benzoic acid Aniline

9. Schotten Baumann Reaction

$$\begin{array}{cccc} \text{CH}_3\text{CH}_2\text{OH} & + & \text{C}_6\text{H}_5\text{COCl} & \xrightarrow{\text{NaOH}} & \text{CH}_3\text{CH}_2\text{OCOC}_6\text{H}_5 & + & \text{HCl} \\ \text{Ethyl alcohol} & \text{Benzoyl chloride} & & \text{Ethyl benzoate} \end{array}$$

10. Sandmeyer's Reaction

$$N \equiv NCI^ CuCVHCI$$
 Δ
 $Chlorobenzene$
 $+ N_2 + CI^-$

Benzenediazonium chloride

$$N \equiv NCl^ CuBr/HBr$$
 Δ
 $Bromobenzene$
 $+ N_2 + Cl^-$

$$\begin{array}{c}
N \equiv NCI^{-} \\
\downarrow V \\
\text{Benzenediazonium chloride}
\end{array}$$

$$\begin{array}{c}
CuCN/KCN \\
\Delta
\end{array}$$

$$\begin{array}{c}
CN \\
+ N_2 + CI^{-}
\end{array}$$

$$\begin{array}{c}
Benzonitrile
\end{array}$$

11. Rosenmund Reaction

$$\begin{array}{c} O \\ \parallel \\ CH_3 - C - Cl + H_2 \end{array} \xrightarrow{\begin{array}{c} Pd.BaSO_4.S \\ Boiling xylene \end{array}} \begin{array}{c} O \\ \parallel \\ CH_3 - C - H + HCl \\ Acetaldehyde \end{array}$$

12. Reimer-Tiemann Reaction

13. Perkin Reaction

$$\begin{array}{c} C_6H_5CH = \boxed{O + H_2} CHCO \\ Benzaldehyde & CH_3CO \\ \end{array} \xrightarrow{CH_3COONa, 453K} \begin{array}{c} C_6H_5CH = CHCO \\ \hline -H_2O \end{array} \xrightarrow{CH_3COONa, 453K} \begin{array}{c} C_6H_5CH = CHCO \\ \hline -H_2O \end{array} \xrightarrow{CH_3COONa, 453K} \begin{array}{c} C_6H_5CH = CHCOOH \\ \hline -H_2O, Boil \\ \hline -H_2O, Boi$$

14. Liebermann's nitroso Reaction

$$R_2NH + HO - N = O \longrightarrow R_2N - N = O + H_2O$$
2° amine Nitrous acid N-Nitrosodialkylamine

15. Mendius Reaction

$$CH_3C \equiv N + 4 [H]$$
 $\xrightarrow{Na/C_2H_5OH}$
 $CH_3CH_2NH_2$

Ethylamine

16. Colbe-Schmitt Reaction

17. Hunsdicker Reaction

CH₃CH₂COOAg + Br₂
$$\xrightarrow{\text{CCl}_4,350\text{K}}$$
 CH₃CH₂—Br + CO₂ + AgBr Silver propionate Ethyl bromide

18. Hoffmann bromamide Reaction

$$CH_3CONH_2 + Br_2 + 4 NaOH \xrightarrow{\Delta} CH_3NH_2 + 2 NaBr + Na_2CO_3 + 2 H_2O$$
Acetamide Methylamine

19. Hoffmann Ammonolysis

20. Hell-Volhard Zelinsky Reaction

21. **lodoform Reaction**

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} \ + \ 4\ I_2 \ + \ 6\ \text{NaOH} \ \longrightarrow \ \text{CHI}_3 \ + \ \text{HCOONa} \ + \ 5\ \text{NaI} \ + \ 5\ \text{H}_2\text{O} \\ & \text{Iodoform} \\ \text{CH}_3\text{CHOHCH}_3 \ + \ 4\ I_2 \ + \ 6\ \text{NaOH} \ \longrightarrow \ \text{CHI}_3 \ + \ \text{CH}_3\text{COONa} \ + \ 5\ \text{NaI} \ + \ 5\ \text{H}_2\text{O} \\ \text{2-Propanol} & \text{Iodoform} \\ \text{CH}_3\text{COCH}_3 \ + \ 3\ I_2 \ + \ 4\ \text{NaOH} \ \longrightarrow \ \text{CHI}_3 \ + \ \text{CH}_3\text{COONa} \ + \ 3\ \text{NaI} \ + \ 3\ \text{H}_2\text{O} \\ \text{Propanone} & \text{Iodoform} \\ \end{array}$$

22. Gattermann-Koch Reaction

$$C_6H_6 + HCOCI \xrightarrow{AlCl_3+CuCl} C_6H_5CHO + HCl$$
Benzaldehyde

23. Gattermann Reaction

24. Gabriel Phthalimide Reaction

25. Fries rearrangement

26. Friedel-CraftsAcylation

27. Friedel-Craft Reaction

28. Fittig Reaction

29. Finkelstein Reaction

$$CH_3CH_2$$
—Br + NaI $\xrightarrow{\text{Acetone or methanol}}$ CH_3CH_2 —I + NaBr Bromoethane

30. Etard Reaction

31. Esterification Reaction

32. Diazotization Reaction

NaNO2 + HCl -

HONO + NaCl

33. Decarboxylation Reaction

34. Clemmensen Reduction

$$\begin{array}{c} \text{CH}_3\text{COCH}_3 \ + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl}} \\ \text{Acetophenone} & + \ 4 \ [\text{H}] & \xrightarrow{Zn/\text{Hg} + \text{Conc. HCl$$

35. Coupling Reaction

36. Claisen Schmidt Reaction

37. Claisen Condensation

$$\begin{array}{c} CH_3 - C - \begin{bmatrix} OC_2H_5 + H \end{bmatrix} - CH_2 - C - OC_2H_5 & C_2H_5ON_2 \\ Ethyl \ acetate & Ethyl \ acetate & Ethyl \ acetate & Ethyl \ acetate & C_2H_5OH_2 - C - OC_2H_5 \\ \hline \end{array}$$

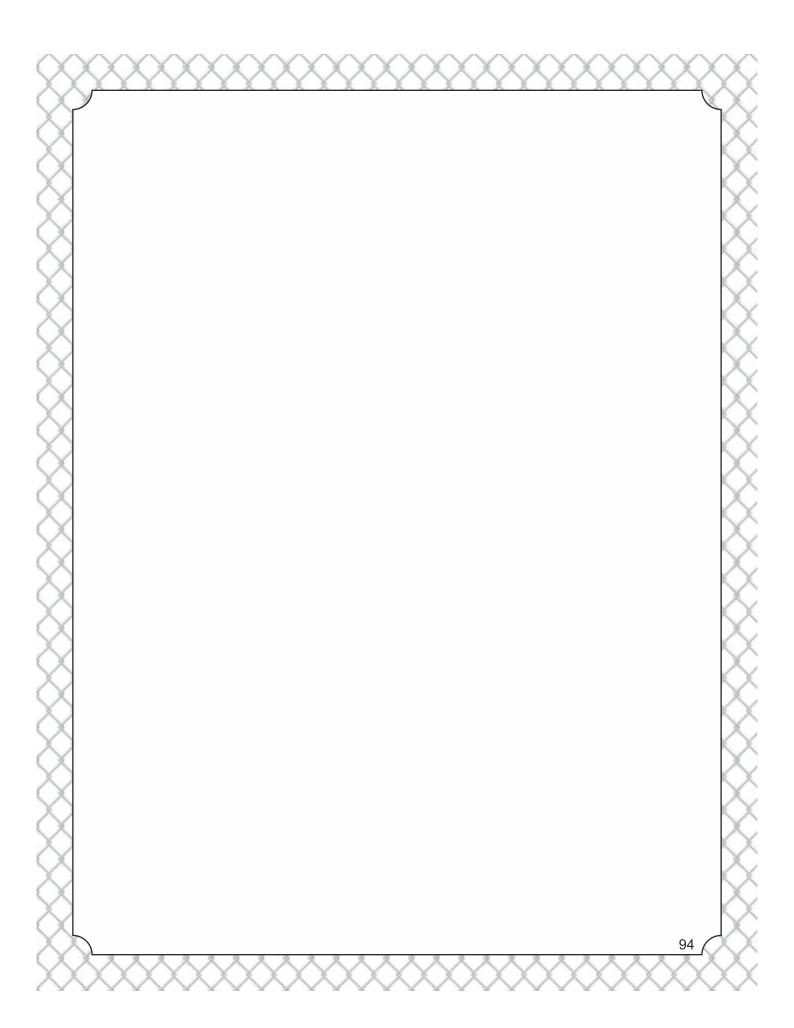
38. Carbylamine Reaction

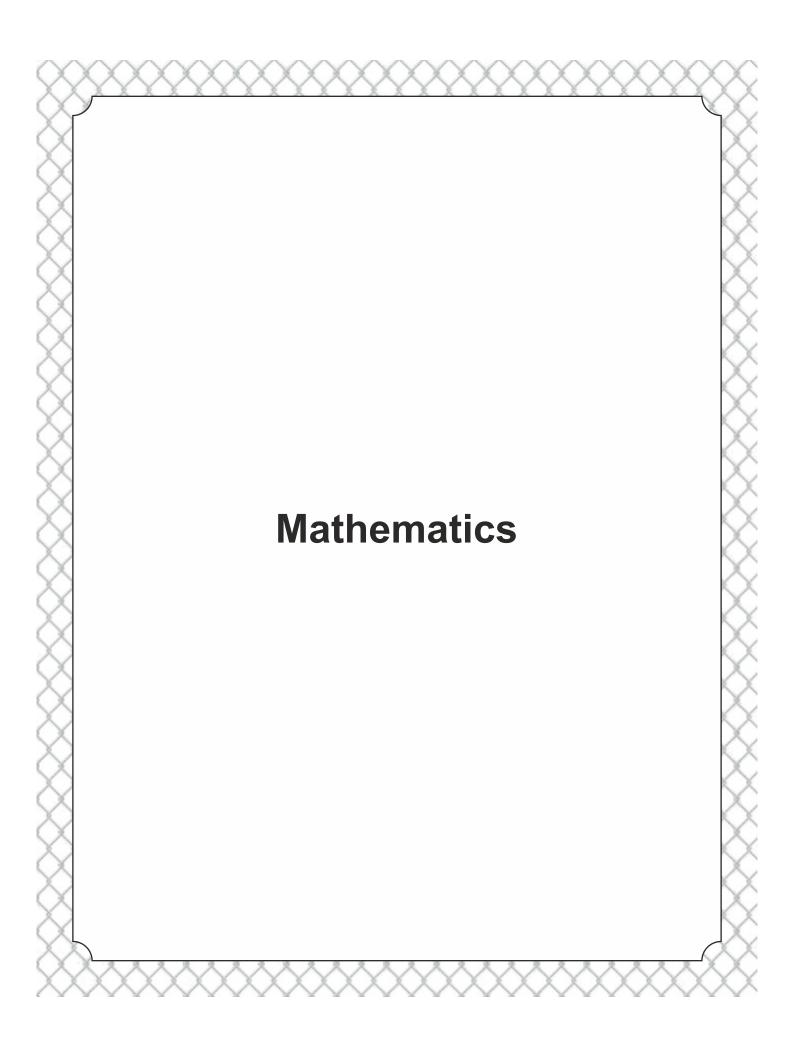
$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{NH}_2 + \text{CHCl}_3 + 3 \text{ KOH} & \xrightarrow{\Delta} & \text{CH}_3\text{CH}_2\text{N} \stackrel{?}{=}\text{C} + 3 \text{ KCl} + 3 \text{ H}_2\text{O} \\ \text{Ethyl isocyanide} & \text{or Ethyl carbylamine} \\ \\ \text{NH}_2 & & \text{N}\stackrel{?}{=}\text{C} \\ \\ \text{Aniline} & + \text{CHCl}_3 + 3 \text{ KOH} & \xrightarrow{\Delta} & \text{Phenyl isocyanide} \\ \\ \text{Only isocyanide} & \text{or Phenyl carbylamine} \\ \end{array}$$

39. Cannizzaro Reaction

$$\begin{array}{c} O \\ \parallel \\ \cdot 2\,H - C - H + NaOH \longrightarrow CH_3 - OH + H - C - ONa \\ Formaldehyde (50\%) & Methyl alcohol & Sod. formate \\ 2\,C_6H_5CHO + NaOH \longrightarrow C_6H_5CH_2OH + C_6H_5COONa \\ Benzaldehyde (50\%) & Benzyl alcohol & Sod. benzoate \\ CH_3O \longrightarrow CHO + HCHO + NaOH \longrightarrow CH_3O \longrightarrow CH_2OH + HCOONa \\ P-Methoxybenzaldehyde (50\%) & P-Methoxybenzyl alcohol & Sod. formate \\ P-Methoxybenzyl alc$$

40. Benzoin Condensation


41. Balz-SchiemannReaction


42. Cross Aldol Condensation

43. Aldol Condensation

44. Benzoylation Reaction

Important FORMULAE

Basic Algebra (Upto class IX & X)

1	$(a+b)^2 = a^2 + 2ab + b^2$	$2 (a-h)^2$	$=a^2-2ab+b^2$			
3	$(a + b)(a + b) = a^2 + b^2$	$\frac{-(a + b)^2}{4(a + b)^2}$	$\frac{-a}{(a-b)^2} = 2(a^2 + b^2)$			
5	$(a+b)(a-b) = a^{2} - b^{2}$ $(a+b)^{2} - (a-b)^{2} = 4ab$	6 $a^2 + b^2 =$	$+ (a - b)^{2} = 2 (a^{2} + b^{2})$ = $(a + b)^{2} - 2ab = (a - b)^{2} + 2ab$			
7	$\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2$	8 $\left(x-\frac{1}{2}\right)^2$	$= x^2 + \frac{1}{x^2} - 2$			
9	$(x + a)(x + b) = x^2 + (a + b)x + a$		x^2			
10	$(x+a)(x+b) = x^{2} + (a+b)x + a$ $(x-a)(x+b) = x^{2} - (a-b)x - a$					
11	$(x+a)(x+b) = x^2 + (a-b)x - a$					
12	$(x-a)(x-b) = x^2 - (a+b)x + a$					
13			$3ab^2 + b^3$			
14	$(a+b)^3 = a^3 + 3ab(a+b) + b^3 = (a-b)^3 = a^3 - 3ab(a-b) - b^3 - a^3 - $	$= a^3 - 3a^2b +$	$3ab^2 - b^3$			
15	$(a+b)^3 + (a-b)^3 = 2a^3 + 6ab$	2				
16	$(a+b)^3 - (a-b)^3 = 2b^3 + 6a^2$	b				
17	$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2}) =$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}) =$	$=(a+b)^3-3$	Bab(a+b)			
18	$a^3 - b^3 = (a - b)(a^2 + ab + b^2) =$	$=(a-b)^3+3$	Bab(a-b)			
19	$\left(x + \frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right)$					
20	$\left(x - \frac{1}{x}\right)^3 = x^3 - \frac{1}{x^3} - 3\left(x - \frac{1}{x}\right)$					
21	$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)^{3} - 3\left(x + \frac{1}{x}\right) = \left(x + \frac{1}{x}\right)\left(x^{2} + \frac{1}{x^{2}} - 1\right)$					
22	$x^{3} - \frac{1}{x^{3}} = \left(x - \frac{1}{x}\right)^{3} + 3\left(x - \frac{1}{x}\right) = \left(x - \frac{1}{x}\right)\left(x^{2} + \frac{1}{x^{2}} + 1\right)$					
23						
28	$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab $	b)(b+c)(c+a))			
	$= a^3 + b^3 + c^3 + 3ab(a+b) + 3bc(b)$	+c)+3ca(c-	(-a) + 6abc			
29	$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2)$	$+b^2+c^2-a$	b-bc-ca)			
	$=\frac{1}{2}(a+b+a)$	$+ c)[(a - b)^2 +$	$(b-c)^2 + (c-a)^2$			
30	$a^4 - b^4 = (a^2 + b^2)(a + b)(a - b)$)				
	Indices and Logarithms	•	,			
1	$a^m \times a^n = a^{m+n}$	2	$a^m \div a^n = a^{m-n}$			
3	$(a^m)^n = a^{mn}$	4	$a^0 = 1$			
5	$a^m \times b^m = (a \times b)^m$	6	$a^m \div b^m = (a \div b)^m$			
7	$a^{-m} = \frac{1}{a^m}$	8	$\sqrt[m]{a} = a^{1/m}$			
9	$\log_a m + \log_a n = \log_a (m \times n)$	10	$\log_a m - \log_a n = \log_a (m \div n)$			
11	$\log_a b^n = n \log_a b$	12	$\log_{a^m} b^n = \frac{n}{m} \log_a b$			
13	$log_a a = 1$	14	$log_{a^m}b^n = \frac{n}{m}log_ab$ $log_ba = \frac{1}{log_ab} = \frac{log_ea}{log_eb}$			
			omial of degree greater than or equal omial $x - a$, then the remainder is			
	p(a). Factor Theorem - $(x-a)$ is a $x-a$ is a factor of $p(x)$, then $p(a)$		polynomial $p(x)$, if $p(a) = 0$. Also, if			

Quadratic Formula x =
$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, where the values of x are the roots of the quadratic equation $ax^2+bx+c=$
0 and $D(=b^2-4ac)$ is the Discriminant.
(a) If D < 0, then the roots are non-real.
(b) If D = 0, then the roots are real and equal.
(c) If D > 0, then the roots are real and unequal.
If the roots of the quadratic equation $ax^2 + bx + c = 0$ are α and β , then
$sum \ of \ roots = \alpha + \beta = -\frac{b}{a} = -\frac{Coefficient \ of \ x}{Coefficient \ of \ x^2} \text{and}$
product of roots = $\alpha \cdot \beta = \frac{c}{a} = \frac{Constant\ term}{Coefficient\ of\ x^2}$
Arithmetic Progression
The nth term of an AP (from beginning) = a+(n-1)d
Where first term is a and common difference is d.
The nth term of an AP (from end) = l -(n-1)d
Where last term is <i>l</i> and common differenceis d.
The sum S_n of n terms of an A.P. with first term a and common difference d is given by
$S_n = \frac{n}{2}[2a + (n-1)d]$ or $S_n = \frac{n}{2}[a+l]$, where $l = \text{last term} = a + (n-1)d$
If the sum S_n of n terms of a sequence is given, then n^{th} term a_n of the sequence can be
determined by using the formula $a_n = S_n - S_{n-1}$

Mensuration (2-D plane figures & 3-D Solids)(Upto class IX & X)

1	Perimeter of Polygon = Sum of all the sides of the polygon
2	Perimeter of Rectangle = $2(length + breadth) = 2(l + b)$
3	Perimeter of Square = $4 \times side = 4a$
4	Circumference of a Circle = $C = 2\pi r$, where r is the radius of the circle
5	Perimeter of a Semicircle = $\pi r + 2r = (\pi + 2)r$
6	Area of Circle = πr^2
7	Area of a Semicircle = $\frac{1}{2}\pi r^2$
8	Length of an $Arc = \frac{\theta}{360^{\circ}} \times 2\pi r$
9	Area of a Sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$
10	Heron's Formula — Area of a Scalene Triangle = $\sqrt{s(s-a)(s-b)(s-c)}$, where s is the semi — perimeter of the Scalene Triangle, $s = \frac{1}{2}(a+b+c)$ and $a,b\&c$ are the sides of the Scalene Triangle.
11	Area of a Right Angled Triangle = $\frac{1}{2} \times base \times heht = \frac{1}{2} \times b \times h$
12	Area of an Isosceles Triangle = $\frac{1}{2} \times b \times \sqrt{a^2 - \left(\frac{b}{2}\right)^2}$
	Where 'b' is the base and 'a' is one of the equal sides of the Isosceles Triangle

13	Area of an Equilateral Triangle = $\frac{\sqrt{3}}{4} \times side \times side = \frac{\sqrt{3}}{4}a^2$					
14	Area of Rhombus = $\frac{1}{2} \times d_1 \times d_2$, where $d_1 \& d_2$ are the diagonals of the Rhombus					
15	Area of Parallelogram = base \times height = b \times h					
16	Area of Rectangle = Length \times breadth = $l \times b$					
17	Area of Square = side \times side = a^2					
18	Area of Trapezium or Trapezoid = $\frac{1}{2} \times sum$ of parallel sides \times height = $\frac{1}{2} \times (a + b) \times h$					
19	Euler's Formula $F + V - E = 2$, where 'F' stands for number of faces, 'V' stands for number of vertices and 'E' stands for number of edges					
20	Area of four walls of a recangular box or Curved Surace Area of Cuboid = $2(l + b) \times h$					
21	Total Surface Area of a Cuboid = 2 (lb + bh + hl)					
22	$Volume\ of\ a\ Cuboid = l \times b \times h$					
23	Curved or Lateral Surface Area of a Cube = $4 l^2$					
24	Total Surface Area of a Cube = $6 l^2$					
25	Volume of a Cube = l^3					
26	Curved or Lateral Surface Area of a Cylinder = $2\pi rh$					
27	Total Surface Area of a Cylinder = $2\pi r(r+h)$					
28	Volume of a Cylinder = $\pi r^2 h$					
29	Curved or Lateral Surface Area of a Cone = $\pi r l$, where $l \left(= \sqrt{r^2 + h^2} \right)$ is slant height of cone					
30	Total Surface Area of Cone = $\pi r(r+l)$					
31	Volume of a Cone = $\frac{1}{3}\pi r^2 h$					
32	Curved or Lateral Surface Area of a Prism = height \times Perimeter of the base = $h \times P$					
33	Total Surface Area of a Prism = $2 \times Area$ of the base + $h \times Perimeter$ of the base = $2A + hP$					
34	$Volume of a Prism = Area of base \times height = Ah$					
35	Curved or Lateral Surface Area of a Pyriamid					
	= Number of sides at the base × Area of a triangle = $n \times \frac{1}{2} \times b \times h$					
36	TotalSurfaceAreaofaPyramid					
	= Area of base + Combined Area of the lateral faces = $A + n \times \frac{1}{2} \times b \times h$					
37	Volume of a Pyramid = $\frac{1}{3} \times Area$ of Base $\times height = \frac{1}{3} \times A \times h$					
38	Surface Area of a Sphere = $4\pi r^2$					
39	Volume of a Sphere $=\frac{4}{3}\pi r^3$					
40	Surface Area of a Hemisphere = $3\pi r^2$					
41	Volume of a Hemisphere = $\frac{2}{3}\pi r^3$					
42	$TotalSurfaceArea of a Hollow Cylinder = 2\pi rh + 2\pi Rh + 2\pi (R^2 - r^2)$					
43	Volume of a Hollow Cylinder = $\pi(R^2 - r^2)h$					
44	Curved Surface Area of Frustum of a Cone or Truncated Cone = $\pi l(r_1 + r_2)$,					
	where $l\left(=\sqrt{h^2+(r_1-r_2)^2}\right)$ is slant height of the frustum					
-						

45	Total Surface Area of Frustum of a Cone or Truncated Cone $= \pi l(r_1 + r_2) + \pi (r_1^2 + r_2^2)$
46	Volume of Frustum of a Cone or Truncated Cone
	$=\frac{1}{2}\pi h(r_1^2+r_2^2+r_1r_2), \text{ where } \mathbf{h} \text{ is vertical height of the frustum,}$
	$r_1\&r_2$ are radii of the two bases (ends)of the frustm

Trigonometry (Level upto class X)

$\sin\theta = \frac{Perpendicular}{Hypotenuse}$ $\cos\theta = \frac{Base}{Hypotenuse}$		$cosecθ = \frac{Hy}{Perp}$ $secθ = \frac{Hypote}{Perp}$	nuse	Perper	Hypotenuse	
$tan\theta = \frac{Perpendicular}{Base}$		$\cot \theta = \frac{Base}{Perpendicular}$		Hypotenuse Base		
$\sin\theta = \frac{1}{\cos e c \theta}$		$\csc\theta = \frac{1}{\sin\theta}$				
$\cos\theta = \frac{1}{sec\theta}$		$\sec\theta = \frac{1}{\cos\theta}$			$\tan\theta = \frac{1}{\cot\theta}$	
$\cot\theta = \frac{1}{\tan\theta}$		$\tan\theta = \frac{\sin\theta}{\cos\theta}$			$\cot\theta = \frac{\cos\theta}{\sin\theta}$	
$\sin^{2}\theta + \cos^{2}\theta = 1$ or $\sin^{2}\theta = 1 - \cos^{2}\theta$ or $\cos^{2}\theta = 1 - \sin^{2}\theta$		$1 + \tan^{2}\theta = \sec^{2}\theta$ or $\tan^{2}\theta = \sec^{2}\theta - 1$ or $\sec^{2}\theta - \tan^{2}\theta = 1$			$1 + \cot^2\theta = \csc^2\theta$ or $\cot^2\theta = \csc^2\theta - 1$ or $\csc^2\theta - \cot^2\theta = 1$	
		$\sec\theta - \tan\theta = \frac{1}{\sec\theta + \tan\theta}$			$\cos \cot \theta = \frac{1}{\cos \cot \theta + \cot \theta}$	
	0°	30°	45°		60°	90°
sin	0	1/2	1/√2		√3/2	1
cos	1	√3/2	1/√2		1/2	0
tan	0	1/√3	1		√3	∞
cosec	∞	2	$\sqrt{2}$		2/√3	1
sec	1	2/√3	$\sqrt{2}$		2	∞
cot	∞	√3	1		1/√3	0
T Ratios of Complementary angles						
$\sin(90^{\circ}-\theta)=\cos\theta$					$sec(90^\circ-\theta)=sec(90^\circ-\theta)$	
•	$0^{\circ}-\theta$)= $\sin\theta$				ec(90°-θ)=cose	
tan(9	tan(90°-θ)=cotθ				cot(90°-θ)=tar	1θ

Coordinate Geometry (Level upto class X)

	-
1	The Distance Formula – The Distance between the points $P(x_1, y_1) \& Q(x_2, y_2)$
	$= PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	The Continue Formula The condinates of maint D(v. v) which divides the
2	The Section Formula – The coordinates of point $P(x, y)$, which divides the
	line segment
	joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$, in the ratio m_1 : m_2 are
	$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right), internally \ and \ \left(\frac{m_1x_2 - m_2x_1}{m_1 - m_2}, \frac{m_1y_2 - m_2y_1}{m_1 - m_2}\right), externally.$
3	<i>The Mid point Formula</i> – The coordinates of the midpoint P of the
	$A(x_1, y_1)$ and $B(x_2, y_2)$ are $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.
	Centroid of a $\triangle ABC = \left(\frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{2}\right)$
	where $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of the \triangle ABC.
4	Area of $a \triangle ABC = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)],$
	where $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of the Δ ABC

Statistics (Level upto class X)

1	$Mean (for ungrouped data) = \frac{Sum \ of \ all \ the \ observations}{Total \ number \ of \ observations}$			
	$\frac{1}{1} \frac{1}{1} \frac{1}$			
	Mean(for grouped data — The Direct Method)			
2	$\frac{1}{2} = \sum f_i x_i$			
	$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$, where x_i are the class marks			
	Mean (for grouped data – The Assumed Mean Method)			
3	$\overline{x} = A + \frac{\sum f_i d_i}{\sum f_i}$, where A is the assumed mean, d _i is the deviation from the class mark nd			
	$d_i = x_i - A$			
	$d_i = x_i - A$ Mean (for grouped data – The Step Deviation Method)			
4	$\overline{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) h$, where \boldsymbol{h} is class size of each class interval and $\boldsymbol{u}_i = \frac{x_i - a}{h}$			
_	Median (for ungrouped data & Odd number of observations)			
5	$= \left(\frac{N+1}{2}\right)^{th} observation, where N is the total number of observations$			
	Median (for ungrouped data & Even number of observations)			
6	$= Mean of \left(\frac{N}{2}\right)^{th} & \left(\frac{N}{2} + 1\right)^{th} observations$			
7	$Median(for\ grouped\ data) = l + \left(\frac{\frac{N}{2} - cf}{f}\right) \times h,$ where l is lower limit of median class, N is total number of observations,			
	cf is cumulative frequency of class preceding the median class, f is frequency of median			
	class, h is class size (assuming class size to be equal)			
8	$Mode(for\ ungrouped\ data) = The\ observation\ which\ occurs\ most\ number\ of\ times$			
	$Mode(for\ grouped\ data) = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h,$			
9	where \boldsymbol{l} is lower limit of the modal class, \boldsymbol{h} is size of the class interval			
	(assuming all class sizes to be equal), f_1 is frequency of the modal class			
	f_0 is frequency of the class preceding the modal class, f_2 is frequency of the class succeeding the modal class.			

Algebra (Level Class XI & XII)

Set Theory

For any three sets A, B & C and Universal set ξ (or) U , we have				
$A \times (B \cup C) = (A \times B) \cup (A \times C)$	$A \times (B \cap C) = (A \times B) \cap (A \times C)$			
$A \times (B - C) = (A \times B) - (A \times C)$	$A \times B = B \times A \Leftrightarrow A = B$			
$(A \times B) \cap (B \times A) = (A \cap B) \times (B \cap A)$	$A \times B = A \times C \Rightarrow B = C$			
Some Important Laws (on Sets)				
Idempotent laws	$A \cup A = A \ and \ A \cap A = A$			
Identity laws	$A \cup \phi = A \ and A \cap \xi = A$			
Dominance laws	$A \cup \xi = \xi \ and A \cap \phi = \phi$			
Complementary laws	$A \cup A' = \xi \ and \ A \cap A' = \phi$			
Commutative laws $A \cup B = B \cup A \text{ and } A \cap B = B \cap A$				
Associative laws $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$				
Distributive laws $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$				

and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ De' Morgan's laws $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$

 $n(AUB) = n(A) + n(B) - n(A \cap B)$

 $n(AUBUC) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$

Permutations - Combinations & Binomial Theorem

If n is a natural number and r is a non-negative integer such that $0 \le r \le n$, then

$${}^{n}C_{r} = \frac{n!}{(n-r)! \, r!} \qquad \qquad {}^{n}C_{r} \times r! = {}^{n}P_{r}$$

$${}^{n}C_{r} = {}^{n}C_{n-r} \qquad \qquad {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

$${}^{n}C_{r} = \frac{n}{r} \cdot {}^{n-1}C_{r-1} = \frac{n}{r} \times \frac{(n-1)}{(r-1)} \cdot {}^{n-2}C_{r-2} = \dots = \frac{n}{r} \times \frac{(n-1)}{(r-1)} \times \frac{(n-2)}{(r-2)} \times \dots \times \frac{n-(r-1)}{1}$$

$${}^{n}C_{r} = \frac{n}{r} \cdot {}^{n-1}C_{r-1} = \frac{n}{r} \times \frac{(n-1)}{(r-1)} \cdot {}^{n-2}C_{r-2} = \dots = \frac{n}{r} \times \frac{(n-1)}{(r-1)} \times \frac{(n-2)}{(r-2)} \times \dots \times \frac{n-(r-1)}{1}$$

$${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x = y$$
 OR $x + y = n$

 ${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x = y$ OR x + y = nIf n is an even natural number, then the greatest among

$${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots, {}^{n}C_{n}$$
 is ${}^{n}C_{\frac{n}{2}}$

If n is an odd natural number, then the greatest among

$${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots, {}^{n}C_{n}$$
 is ${}^{n}C_{\frac{n-1}{2}}$ or ${}^{n}C_{\frac{n+1}{2}}$

The number of ways of selecting \mathbf{r} items or objects from a group of \mathbf{n} distinct items or objects is

$$\frac{n!}{(n-r)! \, r!} = {}^n C_r$$

 $\frac{n!}{(n-r)!\,r!} = {}^nC_r$ Binomial Theorem: - If x and a are real numbers, then for all $n \in \mathbb{N}$, we have $(x+a)^n = {^n}C_0x^na^0 + {^n}C_1x^{n-1}a^1 + {^n}C_2x^{n-2}a^2 + \dots + {^n}C_rx^{n-r}a^r + \dots + {^n}C_{n-1}x^1a^{n-1} + {^n}C_{nx}0a^n$

i.e.,
$$(x+a)^n = \sum_{r=0}^n {}^n C_r x^{n-r} a^r$$

Sequence & Series (AP & GP)

The nth term of an AP (from beginning) = a+(n-1)d

Where first term is a and common difference is d.

The nth term of an AP (from end) = l -(n-1)d

Where last term is and common difference is d.

The sum S_n of n terms of an A.P. with first term a and common difference d is given by $S_n = \frac{n}{2}[2a + (n-1)d]$ or $S_n = \frac{n}{2}[a+l]$, where l = last term = a + (n-1)d

If the sum S_n of n terms of a sequence is given, then n^{th} term a_n of the sequence can be determined by using the formula $a_n = S_n - S_{n-1}$ If n numbers A₁, A₂,, A_n are inserted between two given numbers a and b such that

 $a, A_1, A_2, \dots, A_n, b$ is an arithmetic progression, then A_1, A_2, \dots, A_n are known as

narithmetic means between a and b and the common difference of the A. P. is $d = \frac{b-a}{a}$

Also, $A_1 + A_2 + \dots + A_n = n \left(\frac{a+b}{2} \right)$ where Arithmetic Mean of a and b is $\frac{a+b}{2}$

Three numbers a, b, c are in A. P. iff (if and only if) 2b = a + c

The n^{th} term of a Geometric Progression with first term a and common ratio r is given by

If the sum of n terms of a G. P. with first term
$$a$$
 and common ratio is given by
$$S_n = a\left(\frac{r^n-1}{r-1}\right) \quad for \ r>1$$

$$S_n = a\left(\frac{1-r^n}{1-r}\right) \quad for \ r<1$$

$$S_n = n$$
, if $r = 1$

Also, $S_n = \frac{a - lr}{1 - r}$ or $S_n = \frac{lr - a}{r - 1}$, where l is the last term.

Let a and b be two given numbers. If n numbers $G_1, G_2, G_3, \ldots, G_n$ are inserted between a and b such that the sequence $a, G_1, G_2, \dots, G_n, b$

is a G. P., then the numbers $G_1, G_2, G_3, \dots, G_n$ are known as n geometric means

between a and b. The common ratio of the G.P. is given by $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$ and $G_1 G_2 G_3$ $G_n = \frac{b}{a}$

Gⁿ where G is the single

Geometric Mean of a and b given by \sqrt{ab} .

If A and G are respectively Arithmetic and Geometric Means between two positive numbers a and b, then

- (i)
- The quadratic equation having a and b as its roots is (ii)

(iii)
$$x^{2} - 2Ax + G^{2} = 0.$$
$$a : b = (A + \sqrt{A^{2} - G^{2}}) \cdot (A - \sqrt{A^{2} - G^{2}}).$$

If AM and GM between two numbers are in the ratio m: n, then the numbers are in the ratio $m + \sqrt{m^2 - n^2} : m - \sqrt{m^2 - n^2}$.

Three numbers a, b, c are in G. P. iff (if and only if) $b^2 = ac$.

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \sum n$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \sum_{k=1}^{n} n^2$$

$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2} \right]^2 = \sum_{k=1}^{n} n^3$$

$$\sum_{k=1}^{n} k^4 = 1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30} = \sum_{k=1}^{n} n^4$$

Statistics (Level Class XI)

Mean deviation is the arithmetic mean of the absolute values of deviations about some point (mean or median or mode).

(i) For individual observation, we have

$$M.D. = \frac{1}{n} \sum_{i=1}^{n} \left| x_i - a \right|,$$

where a = mean, median, mode

Also,
$$M.D. = a + h \left\{ \frac{1}{N} \sum_{i=1}^{n} |u_i| \right\}$$
, where $u_i = \frac{x_i - a}{h}$.

(ii) For a discrete frequency distribution, we have

$$M.D. = \frac{1}{N} \sum_{i=1}^{n} f_i |x_i - a|$$
, $a = \text{mean, median, mode}$

$$M.D. = a + h \left\{ \frac{1}{N} \sum_{i=1}^{n} f_i u_i \right\}, \text{ where } u_i = \frac{x_i - a}{h}.$$

Variance is the arithmetic mean of the squares of deviations about mean \bar{x}

(i) For individual observations, we have

$$Variance = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})^2$$

$$Also, Var(X) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2$$

$$Var(X) = h^2 \left[\frac{1}{n} \sum_{i=1}^{n} u_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} u_i\right)^2\right], \text{ where } u_i = \frac{x_i - a}{h}.$$

(ii) For a discrete frequency distribution, we have

$$Var(X) = \frac{1}{N} \sum_{i=1}^{n} f_i \left(x_i - \overline{X} \right)^2$$

$$\Rightarrow Var(X) = \frac{1}{N} \sum_{i=1}^{n} f_i x_i^2 - \left(\frac{1}{N} \sum_{i=1}^{n} f_i x_i \right)^2$$

$$\Rightarrow Var(X) = h^2 \left[\frac{1}{N} \sum_{i=1}^{n} f_i u_i^2 - \left(\frac{1}{N} \sum_{i=1}^{n} f_i u_i \right)^2 \right]$$

The coefficient of variation = C. V. = $\frac{\sigma}{X} \times 100$

Coordinate Geometry (Level Class XI)

1 The Distance Formula – The Distance between the points $P(x_1, y_1) \& Q(x_2, y_2)$

$$= PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2 The Section Formula – The coordinates of point P(x, y), which divides the

line segment oining the points $A(x_1, y_1)$ and $B(x_2, y_2)$, in the ratio $m_1: m_2$ are

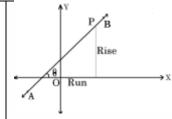
$$\Big(\!\frac{m_1x_2+m_2x_1}{m_1+m_2},\!\frac{m_1y_2+m_2y_1}{m_1+m_2}\!\Big), internally\ and\ \Big(\!\frac{m_1x_2-m_2x_1}{m_1-m_2},\!\frac{m_1y_2-m_2y_1}{m_1-m_2}\!\Big),$$

externally.

3 *The Mid point Formula* – The coordinates of the midpoint P of the

$$A(x_1, y_1)$$
 and $B(x_2, y_2)$ are $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

Centroid of a
$$\triangle ABC = \left(\frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{2}\right)$$


where $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of the \triangle ABC.

4 Area of $a \triangle ABC = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)],$

where $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of the \triangle ABC.

The Slope of a ne AB = $m == tan\theta = \frac{Rise}{Run}$ $= \frac{Diference\ of\ Ordinates}{Difference\ of\ abscissae} = \frac{y_2 - y_1}{x_2 - x_1},$

Where (x_1, y_1) and (x_2, y_2) are the two on line AB.

6 An acute angle θ between the lines having slopes m_1 and m_2 is given by

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
, where $1 + m_1 m_2 \neq 0$.

7 The distance between two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

i.e. $PQ = \sqrt{(Differenceofabscissae)^2 + (Differenceofordinates)^2}$

8 The distance of a point P(x, y) from the origin O(0, 0) is given by $OP = \sqrt{x^2 + y^2}$.

9 The area of the triangle, the coordinates of whose vertices are $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$, is the absolute value of

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] \text{ or } \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

- 10 If the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are collinear, then $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$
- The coordinates of the mid-point of the line segment joining (x_1, y_1) and (x_2, y_2) are $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.
- The coordinates of the centroid of the triangle whose vertices are $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$.
- **13** The equation of a line with slope m and making an intercept c on y-axis is y = mx + c.
- The equation of the line which passes through the point (x_1, y_1) and has slope m is $y y_1 = m(x x_1)$
- **15** The equation of the line which passes through the point (x_1, y_1) and (x_2, y_2) is

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

The equation of the line making intercepts a and b on x and y-axis respectively is $\frac{x}{a} + \frac{y}{b} = 1$. (Intercept Form)

If perpendicular to the line drawn from origin makes an angle α with x-axis and the length of perpendicular is p then equation of the line is

 $x\cos\alpha + y\sin\alpha = p$ (Normal form)

17 General Equation of Circle $-> (x-h)^2 + (y-k)^2 = r^2$

Where (h, k) is the centre of the circle and r is radius of the circle.

18 Standard Equation of circle – $x^2 + y^2 + 2gx + 2fy + c = 0$

Where (-g, -f) is the centre of the circle and $r = \sqrt{g^2 + f^2 - c}$ is the radius of the circle.

If (α, β) is the focus and ax + by + c = 0 is the equation of the directrix of a parabola, then its equation is $(x - \alpha)^2 + (y - \beta)^2 = \frac{(ax + by + c)^2}{a^2 + b^2}$. This equation is of the form $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ satisfying the conditions $abc + 2fgh - af^2 - bg^2 - ch^2 \neq 0$ and $h^2 - ab = 0$.

Following are four standard forms of parabola:

	$y^2 = 4ax$	y^2	$x^2 = 4 \ ay$	<i>x</i> ²
		= -4ax		= -4ay
Coordinates of vertex	(0,0)	(0,0)	(0,0)	(0,0)
Coordinates of focus	(a, 0)	(-a, 0)	(0, a)	(0, -a)
Equation of the	x = -a	x = a	y = -a	y = a
directrix				
Equation of the axis	y = 0	y = 0	x = 0	x = 0
Length of the Latus –	4 a	4 a	4 a	4 a
rectum				
Focal distance of a	a+x	a-x	a+y	a-y
point $P(x, y)$				

If S is the focus and ZZ' is the directrix and P is any point on the ellipse such that M is the foot of perpendicular from P on ZZ' then SP = e. PM

The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents an ellipse, if

$$\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 \neq 0$$
 and $h^2 < ab$.

 $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 \neq 0 \text{ and } h^2 < ab.$ The equation of the ellipse whose axes are parallel to the coordinate axes and whose centre is at the origin, is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with the following properties

	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a < b$	
Coordinates of the centre	(0, 0)	(0, 0)	
Coordinates of the vertices	(a, 0) and (- a, 0)	(0,b) and $(0,-b)$	
Coordinates of foci	(ae, 0) and (- ae, 0)	(0, be) and $(0, -be)$	
Length of the major axis	2 <i>a</i>	2 <i>b</i>	
Length of the minor axis	2 <i>b</i>	2 <i>a</i>	
Equation of the major axis	y = 0	x = 0	
Equation of the minor axis	x = 0	y = 0	
Equations of the directices	$x = \frac{a}{e}$ and $x = -\frac{a}{e}$	$y = \frac{b}{e}$ and $y = -\frac{b}{e}$	
Eccentricity	$e = \sqrt{1 - \frac{b^2}{a^2}}$	$e = \sqrt{1 - \frac{a^2}{b^2}}$	
Length of the latus-rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$	
Focal distances of a point (x, y)	$ a \pm e x $	$ b \pm e y $	

If the centre of the elipse is at the point (h, k) and the directions of the axes are parallel to the coordinate axes, then its equation is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

The equation of the hyperbola having its centre at the origin and axes along the coordinate axes is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with the following properties:

Hyperbola	Conjugate hyperbola
x^2 y^2	x^2 y^2
$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$	$-\frac{1}{a^2} - \frac{1}{b^2} = -1$

Coordinates of the	(0, 0)	(0, 0)
centre		
Coordinates of the	(a,0) and $(-a,0)$	(0,b) and $(0,-b)$
vertices		
Coordinates of foci	(± ae, 0)	$(0, \pm be)$
Length of the	2 <i>a</i>	2 <i>b</i>
transverse axis		
Length of the	2b	2 <i>a</i>
conjugate axis		
Equation of the	y = 0	x = 0
transverse axis		
Equation of the	x = 0	y = 0
conjugate axis		
Equatio□s of the	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$
direectices	-e	$y - \perp e$
Eccentricity	b^2	$e = \sqrt{1 + \frac{a^2}{b^2}}$
	$e = \sqrt{1 + \frac{b^2}{a^2}}$	
	or $b^2 = a^2(e^2 - 1)$	or $a^2 = b^2(e^2 - 1)$
Length of the latus-	$2b^2$	$2a^2$
rectum	\overline{a}	<u></u>

- If the centre of the hyperbola is at the point (h, k) and the directions of the axes are parallel to the coordinate axes, then its equation is $\frac{(x-h)^2}{a^2} \frac{(y-k)^2}{b^2} = 1$
- **25** Distance between two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

26 Section Formula: If R divides PQ in the ratio m:n, then

$$R_x = \frac{mQ_x \pm nP_x}{m \pm n}, \qquad R_y = \frac{mQ_x \pm nP_y}{m \pm n}, \qquad R_z = \frac{mQ_z \pm nP_z}{m \pm n}$$

Note:- "+" sign for internal division & "-" sign for external division.

Trigonometry and Inverse Trigonometry (Level Class X-XI-XII)

$\sin\theta = \frac{\frac{Perpendicular}{Hypotenuse}}{\frac{Base}{Hypotenuse}}$	$cosec\theta = \frac{Hypotenuse}{Perpendicular}$ $sec\theta = \frac{Hypotenuse}{Base}$		Hypotenuse ###
$tan\theta = \frac{Perpendicular}{Base}$	$\cot \theta = \frac{Base}{Perpendicular}$		Base
$\sin\theta = \frac{1}{\cos e c \theta}$	$\csc\theta = \frac{1}{\sin\theta}$		
$\cos\theta = \frac{1}{sec\theta}$	$\sec\theta = \frac{1}{\cos\theta}$		$\tan\theta = \frac{1}{\cot\theta}$
$\cot\theta = \frac{1}{\tan\theta}$	$\tan\theta = \frac{\sin\theta}{\cos\theta}$		$\cot\theta = \frac{\cos\theta}{\sin\theta}$
$\sin^2\theta + \cos^2\theta = 1$	$1 + \tan^2\theta = \sec^2\theta$		$1 + \cot^2\theta = \csc^2\theta$
$\sin^2\theta = 1 - \cos^2\theta$ or	$\tan^2\theta = \sec^2\theta - 1$ or		$\cot^2\theta = \csc^2\theta - 1$ or
$\cos^2\theta = 1 - \sin^2\theta$	$\sec^2\theta - \tan^2\theta = 1$		$\csc^2\theta - \cot^2\theta = 1$

		Sec θ – $\tan\theta$ =		$\cos \cot \theta - \cot \theta = \frac{1}{\cos \cot \theta + \cot \theta}$		
	O°	30°	45°	60°	90°	
sin	0	1/2	$1/\sqrt{2}$	√3/2	1	
cos	1	√3/2	$1/\sqrt{2}$	1/2	О	
tan	О	1/√3	1	√3	∞	
cosec	∞	2	$\sqrt{2}$	2/√3	1	
sec	1	2/√3	$\sqrt{2}$	2	∞	
cot	∞	√3	1	1/√3	О	
T Ratios of Complementary angles						
sir	$\sin(90^{\circ}-\theta)=\cos\theta$			cosec(90°-θ)=secθ		
со	$\cos(90^{\circ}-\theta)=\sin\theta$			sec(90°-θ)=cosecθ		
ta	tan(90°-θ)=cotθ			cot(90°-θ)=tanθ		

sin(90+0)=+cos0 cos(90+0)=-sin0 tan(90+0)=-cot0 180 ≤ sin(180+0)=-sin0 cos(180+0)=-cos0 tan(180+0)=+tan0	sin(360+0)=+sin0 cos(360+0)=+cos0 tan(360+0)=+tan0 → 0/360 sin(270+0)=-cos0 cos(270+0)=+sin0 tan(270+0)=-cot0	sin(180-θ)=+sinθ cos(180-θ)=-cosθ tan(180-θ)=-tanθ 180 sin(270-θ)=-cosθ cos(270-θ)=-sinθ tan(270-θ)=+cotθ	,		
$\sin(-\theta) = -\sin\theta$	nθ	$\cos(-\theta) = \cos\theta$			
$\tan(-\theta) = -\tan\theta$	θ	$cosec(-\theta) = -\epsilon$	cosecθ		
$\sec(-\theta) = \sec\theta$		$\cot(-\theta) = -\cot(-\theta)$	θ		
$\sin(A + B) = \sin A$	AcosB + cosAsinB	Sin(A – B)= sinAcosB -cosAsinB			
cos(A + B) = cosA	cos(A + B)= cosAcosB – sinAsinB		cos(A – B)= cosAcosB + sinAsinB		
$\tan(A + B) = \frac{tan}{1-t}$	A + tanB anAtanB	$\tan (A - B) = \frac{ta}{1+}$	n A— tan B tan A tan B		
Sin(A + B) + sin	$(A - B) = 2\sin A \cos B$	Sin(A + B) – sir	$n(A - B) = 2\cos A \sin B$		
$\cos(A + B) + \cos$	(A – B) =2cosAcosB	$\cos(A - B) - \cos(A - B)$	s(A + B) = 2sinAsinB		
sin(A + B)sin(A -	$-B) = \sin^2 A - \sin^2 B$	cos(A + B)cos(A -	$-B) = \cos^2 A - \sin^2 B$		
sinC + sinD = 2	$\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	sinC - sinD = 2	$2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$		
$\cos C + \cos D = 2$	$2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	$\cos C - \cos D = 0$	$2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{D-C}{2}\right)$		
$\sin 2\theta = 2\sin \theta \cos \theta$	$s\theta = \frac{2tan\theta}{1 + tan^2\theta}$	$\cos 2\theta = \cos^2 \theta$	$-\sin^2\theta = 2\cos^2\theta - 1$		

	$= 1 - 2\sin^2\theta = \frac{1 - \tan^2\theta}{1 + \tan^2\theta}$
$\tan 2\theta = \frac{2tan\theta}{1 - tan^2\theta}$	$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$
$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$	$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$
$1 + \cos 2\theta = 2\cos^2\theta$ or	$1 - \cos 2\theta = 2\sin^2\theta$ or
$\cos\theta = \sqrt{\frac{1 + \cos 2\theta}{2}}$	$\sin\theta = \sqrt{\frac{1 - \cos 2\theta}{2}}$
$\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$	$\cos 36^\circ = \frac{\sqrt{5}+1}{4}$
-: (A + D + C): A D C + A -:	Daniel Company and Daniel Company and Asia Daniel Company

sin(A + B + C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC

cos(A + B + C) = cosAcosBcosC - cosAsinBsinC - sinAcosBsinC - sinAsinBcosC

$$tan(A + B + C) = \frac{tan A + tan B + tan C - tan A tan B tan C}{1 - tan A tan B - tan B tan C - tan C tan A}$$

The relation between three systems of measurement of an angle is $\frac{D}{90^{\circ}} = \frac{G}{100} = \frac{2R}{\pi}$ Where the three systems of measuring angles are:

i) Sexagesimalsystem, in which we have

1right angle = 90 degrees, (= 90°), $1^\circ = 60 \text{ minutes} (= 60')$, 1' = 60 seconds (= 60'')

- ii) Centesimal system, in which we have
- 1 right angle = 100 grades, 1grade = 100 minutes, 1 minute = 100 seconds
- iii) Circular system, in which the unit of measurement is radian. One radian is the measure of an angle subtended at the centre of a circle by an arc of length equal to the radius of the circle. Π radians = 180°

Trigonometric Equations and their General Solutions

Trigonometric Equations	General solutions
$\sin\theta = 0$	$\theta = n\pi$
$\cos\theta = 0$	$\theta = (2n+1)\pi/2$
$tan\theta = 0$	$\theta = n\pi$
$\sin\theta = \sin\alpha$	$\theta = n\pi + (-1)^n\alpha$
$\cos\theta = \cos\alpha$	$\theta = 2n\pi \pm \alpha$
$tan\theta = tan\alpha$	$\theta = n\pi + \alpha$
$\sin^2\theta = \sin^2\alpha$	$\theta = n\pi \pm \alpha$
$\cos^2\theta = \cos^2\alpha$	$\theta = n\pi \pm \alpha$
$\tan^2\theta = \tan^2\alpha$	$\theta = n\pi \pm \alpha$

Solutions of Triangle Formulas

In a ΔABC

- a, b, and c are the lengths of the sides of the triangle (opposite to angles A,B,C respectively)
- A, B, and C are the angles of the triangle.
- R is the radius of the circumcircle of the triangle.

Sine Rule or Sine Law $a/\sin A = b/\sin B = c/\sin C=2R$

Where circumradius of $\triangle ABC R = \frac{abc}{4.5}$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{2\Delta}{abc}$$

$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} = \frac{abc}{4\Delta S}$$

Where Δ is area of triangle and $s = \frac{a+b+c}{2}$.

Cosine Formula: In any triangle ABC,

(i)
$$\cos A = (b^2+c^2-a^2)/2bc$$
 (ii) $\cos B = (c^2+a^2-b^2)/2ca$ (iii) $\cos C = (a^2+b^2-c^2)/2ab$

Projection Formula: In any triangle ABC,

Napier's Analogy- Tangent rule:

In any triangle ABC, with sides a = BC, b = CA and c = BA, then prove that

(i)
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$

(ii)
$$\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}$$

(iii)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$$

In $\triangle ABC$, $\angle A + \angle B + \angle C = \pi$

(a)
$$sin(B+C) = sin(\pi-A) = sinA$$

(b)
$$\cos(C + A) = \cos(\pi - B) = -\cos B$$

(c)
$$\sin \frac{A+B}{2} = \sin \left(\frac{\pi}{2} - \frac{C}{2}\right) = \cos \frac{C}{2}$$

(d)
$$\cos \frac{B+C}{2} = \cos \left(\frac{\pi}{2} - \frac{A}{2}\right) = \sin \frac{A}{2}$$

Sine rule: In, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ Where R = Circumradius and a, b, c are sides of triangle.

Cosine rule:
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

Trigonometric ratios of half - angles:

(a)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
 where $2s = a + b + c$; (b) $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$; (c) $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

4.1 Conditional Identity

When the angles, A, B and C satisfy a given relation, we can establish many interesting identities connecting the trigonometric functions of these angles. To prove these identities, we require the properties of complementary and supplementary angles. For example, if $A + B + C = \pi$, then

1.
$$sin(B+C) = sinA, cosB = -cos(C+A)$$

2.
$$cos(A+B) = -cosC, sinC = sin(A+B)$$

3.
$$tan(C+A) = -tanB_{s}cotA = -cot(B+C)$$

4.
$$\cos \frac{A+B}{2} = \sin \frac{C}{2}, \cos \frac{C}{2} = \sin \frac{A+B}{2}$$

5.
$$\sin \frac{C + A}{2} = \cos \frac{B}{2}, \sin \frac{A}{2} = \cos \frac{B + C}{2}$$

6.
$$tan \frac{B+C}{2} = cot \frac{A}{2}$$
, $tan \frac{B}{2} = cot \frac{C+A}{2}$

Some Important Identities: If $A + B + C = \pi$, then

2.
$$cotBcotC + cotCcotA + cotAcotB = 1$$

3.
$$\tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1$$

4.
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$$

6.
$$\cos 2A + \cos 2B + \cos 2C = -1 - 4\cos A\cos B\cos C$$

7.
$$\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2\cos A \cos B \cos C$$

8.
$$\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

9.
$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

Inverse Trigonometric Functions

$\sin^{-1}(\sin\theta) = \theta$, for all $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$	$\cos^{-1}(\cos\theta) = \theta$, for all $\theta \in [0,\pi]$		
$\tan^{-1}(\tan \theta) = \theta$, for all $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$	$cosec^{-1}(cosec \theta) = \theta$, for all $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$,		
	$\theta \neq 0$		
$sec^{-1}(\sec \theta) = \theta$, for all $\theta \in [0, \pi]$, $\theta \neq \frac{\pi}{2}$	$\cot^{-1}(\cot\theta) = \theta$, for all $\theta \in (0,\pi)$		
$sin(sin^{-1}x) = x$, for all $x \in [-1,1]$	$\cos(\cos^{-1} x) = x, \text{ for all } x \in [-1, 1]$		
$tan (tan^{-1} x) = x$, for all $x \in \mathbb{R}$	cosec $(cosec^{-1} x) = x$, for all $x \in (-\infty, -1] \cup$		
	[1,∞)		
$\sec(\sec(\sec^{-1} x) = x, \text{ for all } x \in (-\infty, -1] \cup [1, \infty)$	$\cot(\cot^{-1} x) = x$, for all $x \in \mathbb{R}$		
$\sin^{-1}(-x) = -\sin^{-1}x$, for all $x \in [-1, 1]$	$\cos^{-1}(-x) = \pi - \cos^{-1}x$, for all $x \in [-1, 1]$		
$tan^{-1}(-x) = -tan^{-1}x$, for all $x \in \mathbb{R}$	$cosec^{-1}(-x) = -cosec^{-1} x, \text{ for all } x \in (-\infty, -1] \cup$		
	[1,∞)		
$\sec^{-1}(-x) = \pi - \sec^{-1}x, \text{ for all } x \in (-\infty, -\infty)$	· 1] ∪ [1,∞)		
$\cot^{-1}(-x) = \pi - \cot^{-1}x$, for all $x \in \mathbb{R}$			
$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}x, \text{ for all } x \in (-\infty, -1] \cup$	[1,∞)		
$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x, \text{ for all } x \in (-\infty, -1] \cup [1]$	1,∞)		
$tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} cot^{-1}x, & for \ x > 0\\ -\pi + \cot^{-1}x, & for \ x < 0 \end{cases}$			
$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$, for all $x \in [-1, 1]$			

In $\triangle ABC$, $\angle A + \angle B + \angle C = \pi$

(a)
$$sin(B+C) = sin(\pi-A) = sinA$$

(b)
$$\cos(C + A) = \cos(\pi - B) = -\cos B$$

(c)
$$\sin \frac{A+B}{2} = \sin \left(\frac{\pi}{2} - \frac{C}{2}\right) = \cos \frac{C}{2}$$

(d)
$$\cos \frac{B+C}{2} = \cos \left(\frac{\pi}{2} - \frac{A}{2}\right) = \sin \frac{A}{2}$$

Sine rule: In, $\frac{a}{\sin A} = \frac{b}{\sin A} = \frac{c}{\sin C} = 2R$ Where R = Circumradius and a, b, c are sides of triangle.

Cosine rule:
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

Trigonometric ratios of half - angles:

(a)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
 where $2s = a + b + c$; (b) $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$; (c) $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

Area of a triangle : $\Delta = \frac{1}{2}bcsinA = \frac{1}{2}casinB = \frac{1}{2}absinC$

Heron's formula : $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$.

Circumcircle Radius : $R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C} = \frac{abc}{4\Delta}$

Incircle Radius: (a) $r = \frac{\Delta}{s}$; (b) $r = (s-a)\tan(\frac{A}{2})$, $r = (s-b)\tan(\frac{B}{2})$ and $r = (s-c)\tan(\frac{C}{2})$

Radius of the Escribed Circle:

(a)
$$r_1 = \frac{\Delta}{s-a}, r_2 = \frac{\Delta}{s-b}, r_3 = \frac{\Delta}{s-c}$$

(b)
$$r_1 = s \tan \frac{A}{2}, \ r_2 = s \tan \frac{B}{2}, \ r_3 = s \tan \frac{C}{2}$$

(c)
$$r_1 = a \frac{\cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}, r_2 = b \frac{\cos \frac{C}{2} \cos \frac{A}{2}}{\cos \frac{B}{2}}, r_3 = c \frac{\cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{C}{2}}$$

(d)
$$r_1 = 4R \sin{\frac{A}{2}} \cos{\frac{B}{2}} \cos{\frac{C}{2}}, \ r_2 = 4R \cos{\frac{A}{2}} \sin{\frac{B}{2}} \cos{\frac{C}{2}}, \ r_3 = 4R \cos{\frac{A}{2}} \cos{\frac{B}{2}} \sin{\frac{C}{2}}$$

Length of Angle bisector and Median:

$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2} \ \text{ and } \ \beta_a = \frac{2bccos\frac{A}{2}}{b+c} \Longrightarrow m_a - \text{length of median}, \ \beta_a - \text{length of bisector}.$$

The circle which can be inscribed within the triangle so as to touch all the three sides of the triangle is called the incircle of the triangle. The centre of the incircle is called the incentre of the triangle and it is the point of intersection of the internal bisectors of the angles of the triangle. The radius of the circle is called the inradius of the triangle and is usually denoted by rin-Radius: The radius r of the inscribed circle of a triangle ABC is given by

(a)
$$r = \frac{\Delta}{s}$$
 (ii) $r = (s-a)tan(\frac{A}{2})$, $r = (s-b)tan(\frac{B}{2})$ and $r = (s-c)tan(\frac{C}{2})$

$$\text{(b)} \quad r = \frac{a sin \left(\frac{B}{2}\right) sin \left(\frac{C}{2}\right)}{cos \left(\frac{A}{2}\right)}, \ r = \frac{b sin \left(\frac{A}{2}\right) sin \left(\frac{C}{2}\right)}{cos \left(\frac{B}{2}\right)} \quad \text{and} \quad r = \frac{c sin \left(\frac{B}{2}\right) sin \left(\frac{A}{2}\right)}{cos \left(\frac{C}{2}\right)}$$

Figure 19.11

$$2\cos^{-1}x = \begin{cases} \cos^{-1}(2x^{2} - 1), & \text{if } 0 \le x \le 1 \\ 2\pi - \cos^{-1}(2x^{2} - 1), & \text{if } -1 \le x \le 0 \end{cases}$$

$$3\cos^{-1}x = \begin{cases} \cos^{-1}(4x^{3} - 3x), & \text{if } \frac{1}{2} \le x \le 1 \\ 2\pi - \cos^{-1}(4x^{3} - 3x), & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ 2\pi + \cos^{-1}(4x^{3} - 3x), & \text{if } -1 \le x \le -\frac{1}{2} \end{cases}$$

$$2\tan^{-1}x = \begin{cases} \tan^{-1}\left(\frac{2x}{1-x^{2}}\right), & \text{if } -1 < x < 1 \\ \pi + \tan^{-1}\left(\frac{2x}{1-x^{2}}\right), & \text{if } x > 1 \\ -\pi + \tan^{-1}\left(\frac{2x}{1-x^{2}}\right), & \text{if } x < -1 \end{cases}$$

$$3\tan^{-1}x = \begin{cases} \tan^{-1}\left(\frac{3x-x^{3}}{1-3x^{2}}\right), & \text{if } x < \frac{1}{\sqrt{3}} \\ \pi + \tan^{-1}\left(\frac{3x-x^{3}}{1-3x^{2}}\right), & \text{if } x < \frac{1}{\sqrt{3}} \\ -\pi + \tan^{-1}\left(\frac{3x-x^{3}}{1-3x^{2}}\right), & \text{if } x < \frac{1}{\sqrt{3}} \end{cases}$$

$$2\tan^{-1}x = \begin{cases} \sin^{-1}\left(\frac{2x}{1+x^{2}}\right), & \text{if } -1 \le x \le 1 \\ \pi - \sin^{-1}\left(\frac{2x}{1+x^{2}}\right), & \text{if } x < -1 \end{cases}$$

$$2\tan^{-1}x = \begin{cases} \cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), & \text{if } 0 \le x < \infty \end{cases}$$

$$-\cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), & \text{if } 0 \le x < \infty \end{cases}$$

$$\sin^{-1}x = \cos^{-1}\left(\sqrt{1-x^{2}}\right) = \tan^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) = \cot^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right) = \sec^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right) = \csc^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$$

$$\cos^{-1}x = \sin^{-1}\left(\sqrt{1-x^{2}}\right) = \tan^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right) = \cot^{-1}\left(\frac{1}{x}\right) = \sec^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right) = \csc^{-1}\left(\frac{\sqrt{1+x^{2}}}{x}\right)$$

$$\tan^{-1}x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right) = \cot^{-1}\left(\frac{1}{x}\right) = \csc^{-1}\left(\frac{\sqrt{1+x^{2}}}{x}\right) = \csc^{-1}\left(\frac{\sqrt{1+x^{2}}}{x}\right)$$

	Calculus (Limits, derivatives and Integrals)					
	Li	Limits				
1	$\lim_{x \to a} f(x) \text{ exists} \Leftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$					
2	Let $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$. If l and m	ooth ex	xist, then			
	(i) $\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x)$					
	(ii) $\lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \frac{1}{2}$	$\lim_{x\to a} g(x)$	l = l + m			
	(iii) $\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) = lm$					
	(iv) $\lim_{x \to a} \left(\frac{f}{g} \right) (x) = \lim_{\substack{x \to a \\ \lim x \to a}} f(x) = \frac{l}{m}$					
	$(v) \qquad \lim_{x \to a} \{f(a)\}^{g(x)} = l^m$	$\lim_{x \to a} \{f(a)\}^{g(x)} = l^m$				
3	$\lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n-1}$	4	$\lim_{x \to 0} \frac{\sin x}{x} = 1$			
5	$\lim_{x \to 0} \frac{\tan x}{x} = 1$	6	$\lim_{x \to a} \frac{\sin(x-a)}{x-a} = 1$			
7	$\lim_{x \to a} \frac{\tan(x-a)}{x-a} = 1$	8	$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$			

$$\begin{aligned} \tan^{-1}x + \cot^{-1}x &= \frac{\pi}{2}, & \text{for all } x \in \mathbb{R} \\ \sec^{-1}x + \csc^{-1}x &= \frac{\pi}{2}, & \text{for all } x \in (-\infty, -1] \cup [1, \infty) \\ \\ \tan^{-1}x + \tan^{-1}y &= \begin{cases} \tan^{-1}\left(\frac{x+y}{1-xy}\right), & \text{if } x > 0, & y > 0 \text{ and } xy > 1 \\ -\pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & \text{if } x > 0, & y < 0 \text{ and } xy > 1 \end{cases} \\ -\pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & \text{if } x > 0, & y < 0 \text{ and } xy > 1 \end{cases} \\ \tan^{-1}x - \tan^{-1}y &= \begin{cases} \tan^{-1}\left(\frac{x-y}{1+xy}\right), & \text{if } x > 0, & y < 0 \text{ and } xy > 1 \end{cases} \\ \tan^{-1}x - \tan^{-1}y &= \begin{cases} \tan^{-1}\left(\frac{x-y}{1+xy}\right), & \text{if } x > 0, & y < 0 \text{ and } xy < -1 \end{cases} \\ \pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right), & \text{if } x > 0, & y < 0 \text{ and } xy < -1 \end{cases} \\ \text{If } x_1, x_2, x_3, \dots, x_n \in \mathbb{R}, & \text{then } \\ \tan^{-1}x_1 + \tan^{-1}x_2 + \dots + \tan^{-1}x_n &= \left(\frac{s_1-s_3+s_2-s_2+\dots}{1-S_2+s_2-s_3+s_3+\dots}\right), & \text{where } S_k \end{cases} \\ \text{denotes the sum of the products of } x_1, x_2, x_3, \dots, x_n & \text{taken } k \text{ at a time.} \end{cases} \\ \sin^{-1}x + \sin^{-1}y &= \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & \text{if } 1 \le x, y \le 1 \text{ and } x^2 + y^2 \le 1 \end{cases} \\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & \text{if } 0 < x, y \le 1 \text{ and } x^2 + y^2 > 1 \end{cases} \\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & \text{if } 0 < x \le 1, -1 \le y \le 0 \text{ and } x^2 + y^2 > 1 \end{cases} \\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & \text{if } 0 < x \le 1, -1 \le y \le 0 \text{ and } x^2 + y^2 > 1 \end{cases} \\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & \text{if } 0 \le x \le 1, -1 \le y \le 0 \text{ and } x^2 + y^2 > 1 \end{cases} \\ -\pi \cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \end{cases} \\ = \begin{cases} \cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \end{cases} \\ \cos^{-1}x - \cos^{-1}y &= \left(\cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \end{cases} \\ -\cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \end{cases} \\ = \begin{cases} \cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \end{cases} \\ -\cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \end{cases} \\ = \begin{cases} \cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-x^2}\right), & \text{if } -1 \le x \le -\frac{1}{\sqrt{2}} \end{cases} \\ -\pi \sin^{-1}\left(2x\sqrt{1-x^2}\right), & \text{if } -1 \le x \le -\frac{1}{\sqrt{2}} \end{cases} \\ -\pi \sin^{-1}\left(2x\sqrt{1-x^2}\right), & \text{if } -1 \le x \le -\frac{1}{\sqrt{2}}$$

A real valued function
$$f(x)$$
 defined on (a, b) is said to be differentiable at $x = c \in (a, b)$, iff $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely

$$\Leftrightarrow \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c}$$

$$\Leftrightarrow \lim_{h \to 0} \frac{f(c - h) - f(c)}{-h} = \lim_{h \to 0} \frac{f(c + h) - f(c)}{h}$$

$$\Leftrightarrow (LHD \text{ at } x = c) = (RHD \text{ at } x = c)$$

27. If
$$P(x_1, y_1)$$
 is a point on the curve $y = f(x)$, then

$$y - y_1 = \left(\frac{dy}{dx}\right)_P (x - x_1)$$
 is the equation of tangent at P. $y - y_1 = -\frac{1}{\left(\frac{dy}{dx}\right)_P} (x - x_1)$ is the equation of the normal at P.

28. The angle between the tangents to two given curves at their point of intersection is defined as the angle of intersection of two curves. If
$$C_1$$
 and C_2 are two curves having equations $y = f(x)$ and $y = g(x)$ respectively such that they intersect at point P. The angle θ of intersection of these two curves is given by

$$\tan \theta = \frac{\left(\frac{dy}{dx}\right)_{C_1} - \left(\frac{dy}{dx}\right)_{C_2}}{1 + \left(\frac{dy}{dx}\right)_{C_1} \left(\frac{dy}{dx}\right)_{C_2}}$$

If the angle of intersection of two curves is a right angle, then the curves are said to intersect orthogonally. The condition for orthogonally of two curves C_1 and C_2 is

$$\left(\frac{dy}{dx}\right)_{C_1} \times \left(\frac{dy}{dx}\right)_{C_2} = -1$$

to intersect orthogonally. The condition for orthogonally of two curves
$$C_1$$
 at $\left(\frac{dy}{dx}\right)_{C_1} \times \left(\frac{dy}{dx}\right)_{C_2} = -1$

29. Two curves $ax^2 + by^2 = 1$ and $a'x^2 + b'y^2 = 1$ will intersect orthogonally, if $\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} - \frac{1}{b'}$

Integrals (Indefinite & Definite)

$$\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} - \frac{1}{b'}$$

Integrals (Indefinite & Definite)

1
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$
 2 $\int 0 dx = C$

$$3 \qquad \int 1 \, dx = x + C \qquad \qquad 4 \qquad \int \frac{1}{x} \, dx = \log_e x + C$$

5
$$\int -\frac{1}{x^2} dx = \frac{1}{x} + C$$
 6 $\int e^x dx = e^x + C$

7
$$\int e^{mx} dx = \frac{e^{mx}}{m} + C$$
 8
$$\int a^x dx = \frac{a^x}{\log_e a} + C, \quad a \neq -1, a > 0$$

9
$$\int \sin x \ dx = -\cos x + C$$
 10
$$\int \cos x \ dx = \sin x + C$$

$$11 \qquad \int \sec^2 x \ dx = \tan x + C \qquad \qquad 12 \qquad \int \csc^2 x \ dx = -\cot x + C$$

13
$$\int \sec x \tan x \ dx = \sec x + C$$
 14 $\int \csc x \cot x \ dx = -\csc x + C$

15
$$\int \tan x \ dx = \log|\sec x| + C$$
 16
$$\int \cot x \ dx = \log|\sin x| + C$$

17
$$\left| \int \sec x \ dx = \log |\sec x + \tan x| + C = \log \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C \right|$$

40	$\int_0^{\pi/2} \log \sin x dx = -\pi/2 \log_e 2$				
41	Area bounded between two curves $y=f(x) & y=g(x)$ is				
	$A=\int_a^b (y_2-y_1) dx$ or $A=\int_a^b f(x)-g(x) dx$, where a & b are abscissas of intersecting				
	points.				
In a differential equation is expressible in the form $\frac{dy}{dx} + Py = Q$, where P either constants or functions of x , then it is called a linear differential enter Integration Factor IF= $e^{\int P dx}$ &					
the solution of this equation is given by $y.IF = \int Q.IF \ dx + C$ or $y(e^{\int P \ dx}) = \int (Q \ e^{\int P \ dx}) dx + C$ Sometimes a linear differential equation is in the form $\frac{dx}{dx} + Rx = S$, when					
	are either constants or functions of y . Here IF= $e^{\int R dy}$ & The solution of this equation is given by $x.IF = \int S.IF dy + C$ or $x(e^{\int R dy}) = \int (S e^{\int R dy}) dy + C$				

Matrices

Let $A = [a_{ij}]$ be an $m \times n$ matrix. Then, the transpose of A, denoted by A^T , is an $n \times m$

Matrix such that $(A^T)_{ij} = a_{ji}$ for all i = 1, 2, m; j = 1, 2, ..., n.

Following are the properties of transpose of a matrix:

$$(\mathbf{i})(A^T)^T = A(\mathbf{i}\mathbf{i})(A+B)^T = A^T + B^T(\mathbf{i}\mathbf{i}\mathbf{i})(kA)^T = kA^T(\mathbf{i}\mathbf{v})(AB)^T = B^TA^T(\mathbf{v})(ABC)^T = C^TB^TA^T$$

If A is a non-singular matrix, then $A^{-1} = \frac{1}{|A|} (adj A)$

If A and B are two invertible matrices of the same order, then $(AB)^{-1} = B^{-1}A^{-1}$

A system AX = B of n linear equations in n equations has a unique solution given by $X = A^{-1}B$, if $|A| \neq 0$.

If |A| = 0 and (adj A)B = 0, then the system is consistent and hasinfinitely many solutions. If |A| = 0 and $(adj A)B \neq 0$, then the system is inconsistent.

A homogeneous system of n linear equations in n unknowns is expressible in the form AX = 0. If $|A| \neq 0$, then AX = 0 has unique solution X = 0, i.e. $x_1 = x_2 = \cdots = x_n = 0$. This solution is called the Trivial solution. If |A| = 0, then AX = 0 has infinitely many solutions.

$$|kA| = k^n |A| |adj A| = |A|^{n-1}$$
 adj(adjA)= $|A|^{n-2}A$

 $[adjA]^{-1}=adj(A^{-1})$ $[A^{T}]^{-1}=(A^{-1})^{T}$

$$(A^{-1})^{-1}=A$$
 $A(adj A)=(adj A)A=I|A|$

18
$$\int cosec x \, dx = log|cosec x - cot x| + C = log |ltan \frac{x}{2}| + C$$
19
$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}x + C, \int \frac{1}{1+x^2} \, dx = \tan^{-1}x + C, \int \frac{1}{|x|\sqrt{x^2-1}} = \sec^{-1}x + C$$
20
$$\int \frac{1}{ax+b} \, dx = \frac{1}{a} log_c |ax+b| + C$$
21
$$\int \frac{1}{x^2+a^2} \, dx = \frac{1}{a} \tan^{-1}\frac{x}{a} + C$$
22
$$\int \frac{1}{x^2-a^2} \, dx = \frac{1}{2a} log \left| \frac{x-a}{x+a} \right| + C$$
23
$$\int \frac{1}{a^2-x^2} \, dx = \frac{1}{2a} log \left| \frac{x+x}{x+a} \right| + C$$
24
$$\int \frac{1}{\sqrt{x^2+a^2}} \, dx = log \left| x + \sqrt{x^2+a^2} \right| + C$$
25
$$\int \frac{1}{\sqrt{x^2-a^2}} \, dx = \sin^{-1}\frac{x}{a} + C$$
26
$$\int \frac{1}{\sqrt{a^2-x^2}} \, dx = \sin^{-1}\frac{x}{a} + C$$
27
$$\int \sqrt{x^2+a^2} \, dx = \frac{x}{2} \sqrt{x^2+a^2} + \frac{1}{2}a^2 log \left| x + \sqrt{x^2+a^2} \right| + C$$
28
$$\int \sqrt{x^2-a^2} \, dx = \frac{x}{2} \sqrt{x^2-a^2} - \frac{1}{2}a^2 log \left| x + \sqrt{x^2-a^2} \right| + C$$
29
$$\int \sqrt{a^2-x^2} \, dx = \frac{x}{2} \sqrt{a^2-x^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{a} + C$$
30 If u and v are two functions of x , then
$$\int uv \, dx = u \left(\int v \, dx \right) - \int \left\{ \frac{du}{dx} \int v \, dx \right\} \, dx$$
31
$$\int e^x \{f(x) + f'(x)\} \, dx = e^x f(x) + C$$
32
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2+b^2} \{a \sin bx - b \cos bx\} + C$$
33
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2+b^2} \{a \cos bx + b \sin bx\} + C$$
34
$$\int \int_a^b f(x) \, dx = \int_a^b f(x) \, dx, \quad |b|_b f(x) \, dx, \quad |b|_b f(x) \, dx$$
The above property can be generalized into the following form
$$\int_a^b f(x) \, dx = \int_a^{6-1} f(x) \, dx, \quad |b|_b f(x) \, dx, \quad |b|_b f(x) \, dx$$
Where $a < c_1 < c_2 < c_3 ... < c_{n-1} < c_n < b$.

36
$$\int_a^b f(x) \, dx = \int_a^b f(x) \, dx, \quad |b|_b f(x) \, dx = \int_a^b f(x) \, dx$$
Where $a < c_1 < c_2 < c_3 ... < c_{n-1} < c_n < b$.

36
$$\int_a^b f(x) \, dx = \int_a^b f(x) \, dx, \quad |b|_b f(x) \, dx = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx, \quad |f|_b f(x) \, dx = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx, \quad |f|_b f(x) \, dx = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx, \quad |f|_b f(x) \, dx = \int_a^b f(x) \, dx, \quad |f|_b f(x) \, dx = \int_a^b f(x) \, dx, \quad |f|_b f(x) \, dx = \int_a^b f(x) \, dx = \int_a^b f(x) \, dx$$

Vectors and 3-D Geometry

If \vec{a} and \vec{b} are two non-zero vectors inclined at an angle θ , then

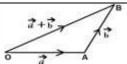
Scalar Product or Dot Product of two vectors – Let \vec{a} and \vec{b} be two vectors and let θ be the angle between them. Then, the scalar product or dot product of \vec{a} and \vec{b} , denoted by $\vec{a}.\vec{b}$, is defined as

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = \text{ab } \cos \theta.$

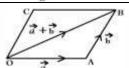
Therefore

$$\cos \theta = \frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|} \Longrightarrow \theta = \cos^{-1} \left(\frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|} \right)$$

' '	
Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{ \vec{b} } = \vec{a} \cdot \hat{b}$	Projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} } = \vec{b} \cdot \hat{a}$
$\vec{a}.\vec{b} = 0 \Leftrightarrow \vec{a}$ is perpendicular to \vec{b}	$\vec{a}.\vec{b} = \vec{b}.\vec{a}$
$\vec{a}.\vec{a} = \vec{a} ^2$	$m\vec{a}.\vec{b} = m(\vec{a}.\vec{b}) = \vec{a}.m\vec{b}$, for any scalar m
$m\vec{a}.n\vec{b} = mn(\vec{a}.\vec{b}) = \vec{a}.mn\vec{b}$, for scalars m , n	$\left \vec{a} + \vec{b}\right \le \left \vec{a}\right + \left \vec{b}\right $
$ \vec{a} - \vec{b} \ge \vec{a} - \vec{b} $	$ \vec{a} \pm \vec{b} ^2 = \vec{a} ^2 + \vec{b} ^2 \pm 2(\vec{a}.\vec{b})$
$(\vec{a} + \vec{b})(\vec{a} - \vec{b}) = \vec{a} ^2 - \vec{b} ^2$	$\vec{a}.\vec{b}$ > 0, iff θ is acute.
$\vec{a}.\vec{b}$ < 0, iff θ is obtuse.	

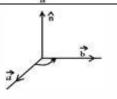

If \vec{a} , \vec{b} and \vec{c} are three vectors, then

$$|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$$

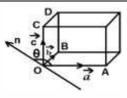

If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Triangle law of Addition for Vectors – In a ΔOAB , if

Triangle law of Addition for Vectors – In a \triangle OAB, if \overrightarrow{OA} and \overrightarrow{AB} represent \vec{a} and \vec{b} respectively, then \overrightarrow{OB} represents $(\vec{a} + \vec{b})$.

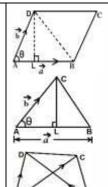

Parallelogram Law of addition for vectors – In a parallelogram OABC, if \overrightarrow{OA} and \overrightarrow{AB} represent \overrightarrow{a} and \overrightarrow{b} respectively, then \overrightarrow{OB} represents $(\overrightarrow{a} + \overrightarrow{b})$.

Vector Product of two vectors – Let \vec{a} and \vec{b} be two nonzero, nonparallel vectors and let θ be the angle between them such that $0 < \theta < \pi$. Then, the vector product of \vec{a} and \vec{b} is defined as


$$\vec{a} \times \vec{b} = (|\vec{a}||\vec{b}|\sin\theta)\,\hat{n} \Rightarrow \theta = \sin^{-1}\left\{\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\right\},$$

Where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} , such that \vec{a} , \vec{b} , \hat{n} form a right-handed system.

Volume of Parallelopiped – If \vec{a} , \vec{b} , \vec{c} be three vectors then the scalar product of \vec{a} with the vector product of \vec{b} and \vec{c} is called the scalar triple product of the vectors \vec{a} , \vec{b} , \vec{c} . It is written as


$$V = \vec{a}.(\vec{b} \times \vec{c}) = \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{bmatrix} \vec{b}\vec{c}\vec{a} \end{bmatrix} = \begin{bmatrix} \vec{c}\vec{a}\vec{b} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Vector Triple Product – If \vec{a} , \vec{b} , \vec{c} be three vectors then the vector product of \vec{a} with $(\vec{b} \times \vec{c})$, is called the vector triple product and is written as

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_2c_3 - b_3c_2 & b_3c_1 - b_1 & 3 & b_1c_2 - b_2c_1 \end{vmatrix}$$

(a)
$$ar (\parallel gm \ ABCD) = |\vec{a} \times \vec{b}|$$
, where $\overrightarrow{AB} = \vec{a}$ and $\overrightarrow{AD} = \vec{b}$.

(b)
$$ar(\Delta ABC) = \frac{1}{2} |\vec{a} \times \vec{b}|$$
, where $\overrightarrow{AB} = \vec{a}$ and $\overrightarrow{AC} = \vec{b}$.

(c) $ar(quad.ABCD) = \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$, where AC and BD are its diagonals.

Co-linearity – The points A, B, C with position vectors \vec{a} , \vec{b} , \vec{c} are collinear if and only if

$$(\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) + (\vec{a} \times \vec{b}) = \vec{0}$$

Area of Triangle – If \vec{a} , \vec{b} , \vec{c} are the position vectors of the points A, B, C, then The area of triangle = $\Delta = \frac{1}{2} [(\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) + (\vec{a} \times \vec{b})]$

Equation of a line passing through two given points –

Vector Form - The vector equation of a line L, passing through two given points A and B with position vectors $\overrightarrow{r_1}$ and $\overrightarrow{r_2}$, is given by $\overrightarrow{r} = \overrightarrow{r_1} + \lambda (\overrightarrow{r_2} - \overrightarrow{r_1})$

$$\vec{r} = \overrightarrow{r_1} + \lambda (\overrightarrow{r_2} - \overrightarrow{r_1})$$

Cartesian Form - The equations of a line passing through two given points

A
$$(x_1, y_1, z_1)$$
 and B (x_2, y_2, z_2) is given by $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ OR $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$

Where a,b,c are the direction ratios of the line

- The vector equation of a line through a point with position vector $\overrightarrow{r_1}$ and (i) parallel to \vec{m} is
- $\vec{r} = \overrightarrow{r_1} + \lambda \, \overrightarrow{m}$ The vector equation of a line through a point with position vectors $\vec{r_1}$ and $\vec{r_2}$ (ii) $\vec{r} = \overrightarrow{r_1} + \lambda (\overrightarrow{r_2} - \overrightarrow{r_1})$

Cartesian Form – Three given points A (x_1, y_1, z_1) , B $(x_2, y_2, 2)$ and C (x_3, y_3, z_3) will be collinear if

$$\frac{x_3 - x_1}{x_2 - x_1} = \frac{y_3 - y_1}{y_2 - y_1} = \frac{z_3 - z_1}{z_2 - z_1}$$

Vector Form – Three given points A, B, C with position vectors \vec{a} , \vec{b} , \vec{c} respectively are collinear if $\vec{c} = (1 - \lambda)\vec{a} + \lambda \vec{b}$

The vector equation of a plane passing through a point having position vector \vec{a} and parallel to vectors \vec{b} and \vec{c} is

 $\vec{r} = \vec{a} + m \vec{b} + n \vec{c}$, where m and n are parameters.

or
$$\vec{r} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c})$$

If a plane makes intercepts of lengths a, b, c with the x-axis, y-axis and z-axis respectively, the equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Vector Form – The equation of \overline{a} plane through the intersection of two planes $\vec{r}.\overrightarrow{n_1}$ = d_1 and $\vec{r} \cdot \overrightarrow{n_2} = d_2$ is given by

$$\vec{r}$$
. $(\vec{n_1} + \lambda \vec{n_2}) = d_1 + \lambda d_2$

Cartesian Form - The equation of a plane through the intersection of two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ is given by $c_1 z + d_1) + \lambda (a_2 x + b_2 y + c_2 z + d_2) = 0$

The Cartesian equation of a plane passing through points $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and (x_3, y_3, z_3) is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

The equation of a plane parallel to the plane

- (a) $\vec{r} \cdot \vec{n} = d$ is $\vec{r} \cdot \vec{n} = d_1$
- (b) ax + by + cz + d = 0 is $ax + by + cz + \lambda = 0$

The length of perpendicular from the point (x_1, y_1, z_1) to the plane ax + by + cz +d = 0 is

$$\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

The distance between the parallel planes $ax + by + cz + d_1 = 0$ and ax + by + cz + $d_2 = 0$ is given by

$$\frac{|d_2-d_1|}{\sqrt{a^2+b^2+c^2}}$$

 $\frac{|d_2-d_1|}{\sqrt{a^2+b^2+c^2}}$ The equation of the family of planes containing the lines

$$a_1x + b_1y + c_1z + d_1 = 0$$
 and $a_2x + b_2y + c_2z + d_2 = 0$ is
$$a_1x + b_1y + c_1z + d_1 + \lambda(a_2x + b_2y + c_2z + d_2) = 0,$$

$$a_1x + b_1y + c_1z + d_1 + \lambda(a_2x + b_2y + c_2z + d_2) = 0$$

where λ is a parameter.

The equations of the planes bisecting the angles between the planes $a_1x + b_1y +$

$$\frac{a_1x + b_1y + c_1z + d_1}{\sqrt{a^2 + b^2 + c^2}} = \pm \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a^2 + b^2 + c^2}}$$

The angle θ between a line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ and a plane $\frac{a_1x+b_1y+c_1z+d_1}{l} = \frac{a_2x+b_2y+c_2z+d_2}{m}$ the plane and is given by

 $\sin \theta = \frac{al + bm + cn}{\sqrt{a^2 + b^2 + c^2}\sqrt{l^2 + m^2 + n^2}}$ The angle θ between the line $\vec{r} = \vec{a} + \lambda \vec{b}$ and the plane

 $\vec{r} \cdot \vec{n} = d$ is given by $\sin \theta =$

Two lines $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ and $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ are coplanar, if $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_1 & m_2 & n_1 \end{vmatrix} = 0$

and the equation of the plane containing them is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0 \text{ or } \begin{vmatrix} x - x_2 & y - y_2 & z - z_2 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0$$

Vector Form - Let the vector equations of two given lines be $\vec{r}=\overrightarrow{r_1}+\lambda\,\overrightarrow{n_1}$ and $\vec{r}=\overrightarrow{r_2}+\overrightarrow{n_2}$, where λ and μ are scalars. Let θ be the angle between these lines. Since the given lines are parallel to $\overrightarrow{n_1}$ and $\overrightarrow{n_2}$ respectively, the angle between the given lines must be equal to the angle between $\overrightarrow{n_1}$ and $\overrightarrow{n_2}$.

$$\cos \theta = \frac{\overrightarrow{n_1}. \ \overrightarrow{n_2}}{|\overrightarrow{n_1}| |\overrightarrow{n_2}|}$$

These planes are parallel, if $\overrightarrow{n_1}$ is parallel to $\overrightarrow{n_2}$.

These planes are perpendicular, if $\overrightarrow{n_1}$. $\overrightarrow{n_2} = 0$.

Cartesian Form - Let the Cartesian equations of two given lines be

$$\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{-z_1}{c_1} \text{and} \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}.$$

Then, the direction ratios of these lines are a_1, b_1, c_1 and a_2, b_2, c_2 respectively. Let θ be angle between these lines. Then

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\left(\sqrt{a_1^2 + b_1^2 + c_1^2}\right)\left(\sqrt{a_2^2 + b_2^2 + c_2^2}\right)}$$
These planes are parallel, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

These planes are perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

Vector Form – (i) The shortest distance between two skew lines

$$\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$$
 and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ is given by $d = \left| \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right|$

(ii) Let $L_1(\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1})$ and $L_2(\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2})$ be two parallel lines. Then these lines are coplanar if

$$\overrightarrow{a_1}.\left(\overrightarrow{b_1}\ \times\ \overrightarrow{b_2}\right)=\ \overrightarrow{a_2}.\left(\overrightarrow{b_1}\ \times\ \overrightarrow{b_2}\right)$$

Distance between Parallel Lines = $|\overrightarrow{BM}| = \left| \frac{\overrightarrow{b} \times (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{b}|} \right|$ Condition for two given lines to intersect – Suppose that the lines

 $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ intersect. Then the shortest distance between them is zero, i.e.

$$\left[(\overrightarrow{a_2} - \overrightarrow{a_1}) \overrightarrow{b_1} \overrightarrow{b_2} \right] = 0.$$

Cartesian Form - The shortest distance between two skew lines
$$\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1} \text{and } \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2} \text{is given by}$$

$$d = \frac{\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}{\sqrt{D}}$$
where D = $\{(a_1b_2-a_2b_1)^2 + (b_1c_2-b_2c_1)^2 + (c_1a_2-c_2a_1)^2\}$

Vector Form – If \hat{n} is a unit vector normal to a given plane, directed from the origin to the plane and p is the length of the perpendicular drawn from the origin to the plane then the vector equation of the plane is \vec{r} . \hat{n} = p.

A vector normal to the plane ax + by + cz + d = 0 is $\vec{n} = a\hat{i} + b\hat{j} + c\hat{k}$.

Cartesian Form – If a, b, c are the direction ratios of the normal to a plane, then the equation of the plane is ax + by + cz + d = 0

Vector Form – The vector equation of a plane passing through a point having position vector \vec{a} and normal to \vec{n} is

$$(\vec{r} - \vec{a}) \cdot \vec{n} = 0$$
 or $\vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$

Cartesian Form – The equation of a plane passing through a point $P(x_1, y_1, z_1)$ is $a(x-x_1)+b(y-y_1)+c(z-z_1)=0$, where a, b, c are constants.

Probability & Conditional Probability (XI-XII)

Probability **Probability**

Probability of an event: - If there are n elementary events associated with a random experiment and m of them are favourable to an event A, then the probability of occurrence of A is defined

$$P(A) = \frac{m}{n} = \frac{Favourable\ number\ of\ elementary\ events}{Total\ number\ of\ elementary\ events}$$

The odds in favour of occurrence of the event A are defined by: m:(n-m)

The odds against the occurrence of A are defined by

The probability of non-occurrence of A is given by $P(\overline{A}) = 1 - P(A)$ If A and B are two events associated with a random experiment, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

If A and B are mutually exclusive events, then

$$P(A \cup B) = P(A) + P(B).$$

If A, B, C are three events associated with a random experiment, then

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

If A and B are two events associated with a random experiment, then

- $P(A \cap B) = P(B) P(A \cap B)$, i.e. probability of occurrence of B only
- $P(A \cap B) = P(A) P(A \cap B)$, i.e. probability of occurrence of A only
- Probability of occurrence of exactly one of A and B (iii) $= P(A) + P(B) - 2P(A \cap B) = P(A \cup B) - P(A \cap B)$

Theoretical Probability = $\frac{Number of favourable outcomes}{n}$

Experimental Probability = $\frac{Number\ of\ favourable\ trials}{Total\ number\ of\ trials}$

Theorem of Total Probability: - Let E_1, E_2, \ldots, E_n be mutually exclusive and exhaustive events associated with a random experiment and let E be an event occurs with some E_i , then

$$P(E) = \sum_{i=1}^{n} P\left(\frac{E}{E_i}\right) . P(E_i)$$

Bayes' Theorem – Let E_1, E_2, \ldots, E_n be mutually exclusive & exhaustive events, associated with a random experiment and let E be any event that occurs with some E_i then

$$P\left(\frac{E_i}{E}\right) = \frac{P\left(\frac{E}{E_i}\right) \cdot P(E_i)}{\sum_{i=1}^{n} P\left(\frac{E}{E_i}\right) P(E_i)}$$

Probability distribution of X is given by

X	x_1	x_2	 x_n
P(X)	P_1	P_2	 P_n

Where each
$$P_i \ge 0 \, \& \sum_{i=1}^n P_i = 1$$

Mean
$$\mu = E(X) = \sum_{i=1}^{n} x_i P_i Variance \sigma^2 = \left(\sum_i x_i^2 P_i - \mu^2\right)$$

Standard Deviation $\sigma = \sqrt{Variance}$

Binomial Distribution: $P(X = r) = {}^{n}c_{r}p^{r}q^{r}$, where p&q are probability of success & failure

$$Mean \ \mu = \sum_{i=1}^{n} x_i P_i = np$$

Variance
$$\sigma^2 = \left(\sum x_i^2 P_i - \mu^2\right) = npq$$

Standard Deviation
$$\sigma = \sqrt{Variance} = \sqrt{npq}$$

Some other important and useful facts & statements

- Sum of all the interior angles of a polygon = $(n-2) \times 180^{\circ}$, where'n' is the number of sides of the polygon
- 2
- 3
- Rational Number (between two given rational numbers 'a' and 'b') = $a + \frac{n(b-a)}{N}$, where n is the sequence of the rational number and N is the total number of rational numbers which we need to find.
- **Euclid's Division Lemma** a = bq + r, where a is dividend, b is divisor, q is quotient and ris remainder.
- The Fundamental Theorem of Arithmetic $LCM \times HCF = Product \ of \ the \ numbers$ 6
- The Result of the Fundamental Theorem of Arithmetic

$$LCM(p,q,r) = \frac{p.q.r.HCF(p,q,r)}{HCF(p,q).HCF(q,r).HCF(p,r)}$$

$$HCF(p,q,r) = \frac{p.q.r.LCM(p,q,r)}{LCM(p,q).LCM(q,r).LCM(p,r)}$$

In A ABC, the mid-points of the sides BC, CA and AB are D.E and F respectively. The lines AD, BE and CF are called medians of the triangle ABC. The points of concurrency of three medians is called the centroid. Generally it is represented by G.

Also,
$$AG = \frac{2}{3}AD$$
, $BG = \frac{2}{3}BE$ and $CG = \frac{2}{3}CF$.

Length of medians from Figure 9.12

$$\Longrightarrow AD^2=b^2+\frac{a^2}{4}-ab\Bigg(\frac{b^2+a^2-c^2}{2ab}\Bigg)$$

$$\Rightarrow AD^2 = \frac{2b^2 + 2c^2 - a^2}{4} \Rightarrow AD = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

Similarly, BE =
$$\frac{1}{2}\sqrt{2a^2+2c^2-b^2}$$
 and CF = $\frac{1}{2}\sqrt{2a^2+2b^2-c^2}$

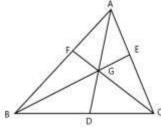


Figure 19.12

Apollonius's theorem - "the sum of the squares of any two sides of any triangle equals twice the square of half the third side, together with twice the square on the median bisecting the third side". For a triangle ABC with M be the midpoint of its side BC,

 $AB^2 + AC^2 = 2\{AM^2 + (BC/2)^2\}$

The distances of the orthocenter from the vertices and the sides: If O is the orthocenter and DEF the pedal triangle of the AABC, where AD, BE, CF are the perpendiculars drawn from A,B,C on the opposite sides BC,CA,AB respectively,

- (i) OA = 2R cosA, OB = 2R cosB and OC = 2R cosC
- (ii) OD = 2R cosBcosC, OE=2R cosCcosA and OF =2R cosAcosB, where R is circumradius.
- (iii) The circumradius of the pedal triangle = $\frac{\kappa}{2}$
- (iv) The area of pedal triangle = $2\Delta \cos A \cos B \cos C$.
- (v) The sides of the pedal triangle are acos A, bcos B and ccos C and its angles are $\pi-2A$, $\pi-2B$ and $\pi-2C$.
- (vi) Circumradii of the triangles OBC, OCA, OAB and ABC are equal.

The circumcentre, centroid and orthocentre are collinear.

In any right angled triangle, the orthocentre coincides with the vertex containing the right angle.

The mid-point of the hypotenuse of a right angled triangle is equidistant from the three vertices of a triangle.

The mid-point of the hypotenuse of a right angled triangle is the circumcentreof the triangle.

The centroid of the triangle lies on the line joining the circumcentre to the orthocentre and divides it in the ratio 1:2

In an acute angled triangle, orthocentre of Δ ABC is the in-centre of the pedal triangle DEF.

Orthocentre and Pedal Triangle:

The triangle formed by joining the feet of the altitudes is called the Pedal Triangle.

- (i) Its angles are $\pi 2A$, $\pi 2B$ and $\pi 2C$.
- (ii) The sides are a cos A = R sin 2A

 $a \cos B = R \sin 2B$

 $a \cos C = R \sin 2C$

(iii) Circum radii of the triangle PBC, PCA, PAB and ABC are equal.

Excentral Triangle:

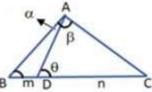
The triangle formed by joining the three excentres I_1 , I_2 and I_3 of ΔABC is called the excentral triangle.

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

The midpoint of each side of the triangle

The foot of each altitude

The midpoint of the line segment from each vertex of the triangle to the orthocenter (where the three altitudes meet; these line segments lie on their respective altitudes).


The nine-point circle is also known as Feuerbach's circle (after Karl Wilhelm Feuerbach), Euler's circle (after Leonhard Euler), Terquem's circle (after Olry Terquem), the six-points circle, the twelve-points circle, the n-point circle, the medioscribed circle, the mid circle or the circummidcircle. Its center is the nine-point center of the triangle.

distance between the circumcenter and the orthocentre of triangle ABC

is $R\sqrt{1 - 8\cos A\cos B\cos C}$

the centroid divides the orthocenter and the circumcenter internally in the ratio 2:1

m – n Theorem:

If D be the point on the side BC of a triangle ABC which divides

the side BC in the ratio m: n,

BD:DC = m:n, \angle BAD = α , \angle CAD = β , \angle CDA = θ , then

(m+n) cot θ = m cot α - n cot β = n cot β - m cot β

Commercial & Financial Mathematics

1	Cost Price = Buying Price + Overhea	d Exp	penses		
2	Profit = Sale Price - Cost Price	3 5	Loss = Cost Price - Sale Price		
4	$Profit \% = \frac{Profit}{Cost \ Price} \times 100\%$	5	$Loss \% = \frac{Loss}{Cost \ Price} \times 100\%$		
6	SP = CP(1 + P	7%)		
7	SP = CP(1 - L	%)		
8	Discount = Marked Price - Sale Price				
	SP = MP(1 - D%),	SP =	= MP(1+T%)		
	Where D stands for Discount and T	stan	•		
9	Sales $Tax = Tax \% \ of \ Bill \ Amount$ 10 Simple Interest = $\frac{PRT}{100}$				
11	Amount = Principal + Simple Interest				
12	If the Interest is compounded annually, then				
	$A = P\left(1 + \frac{R}{100}\right)^n,$ where A is Amount, P is Principal, R is Rate of Interest and n is time period.				
13	If the Interest is compounded half yearly, then				
	$A = P\left(1 + \frac{R}{200}\right)^{2n},$				
14	If the Interest is compounded quarterly, then				
	$A = P\left(1 + \frac{R}{400}\right)^{4n},$				
15	Compund Interest = $P\left[\left(1 + \frac{R}{100}\right)^n - 1\right]$				
