ASSIGNMENTS

OBJECTIVE QUESTIONS

LEVEL – I

- **Q.1** For the cell, $Zn(s) |Zn^{2+}|| Cu(s)$, the standard cell voltage, E^{0}_{cell} is 1.10 V. When a cell using these reagents was prepared in the lab, the measured cell voltage was 0.98 V. One possible explanation for the observed voltage is :
 - $(A) \qquad \text{there were 2.00 mole of } Cu^{2+} \, \text{but only 1.00 mol of } Zn^{2+} \\$
 - (B) the Zn electrode had twice the surface of the Cu electrode
 - (C) the $[Zn^{2+}]$ was larger than the $[Cu^{2+}]$
 - (D) the volume of the Zn^{2+} solution was larger than the volume of the Cu^{2+} solution.
- **Q.2** Number of electrons lost during electrolysis of 0.355 g of Cl⁻ is :

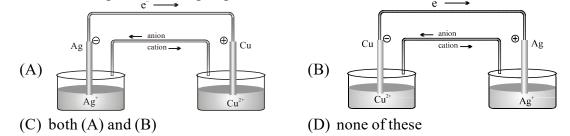
(A) 0.01 (B) 0.01
$$N_0$$
 (C) 0.02 N_0 (D) $\frac{0.01}{2N_0}$

Q.31 mol of electrons passes through each of the solution of $AgNO_3$, $CuSO_4$ and $AlCl_3$ when
Ag, Cu and Al are deposited. Their molar ratio will be :
(A) 1 : 1 : 1(B) 6 : 3 : 2(C) 6 : 3 : 1(D) 1 : 3 : 6

Q.4 Assume that during electrolysis of AgNO₃, only H₂O is electrolysed and O₂ is formed as : $2H_2O \longrightarrow 4H^+ + O_2 + 4e^-$

 O_2 formed at NTP due to passage of 2 amperes of current for 965 s is : (A) 0.112 L (B) 0.224 L (C) 11.2 L (D) 22.4 L

Q.5 A conducting wire carries a current of 0.965 ampere. Rate of flow of electrons per second at a given point is :


(A)
$$1 \times 10^{-5} N_0$$
 (B) N_0 (C) 0.965 N_0 (D) $\frac{N_0}{0.965}$

Q.6 A quantity of electrical charge that brings about the deposition of 4.5 g Al from Al³⁺ at the cathode will also produce the following volume (STP) of $H_2(g)$ from H⁺ at the cathode : (A) 44.8 L (B) 22.4 L (C) 11.2 L (D) 5.6 L

Q.7 Consider the given data :

	Half cell reaction	E°		
1.	$Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} \implies 2Cr^{3+} + 7$	7H,O + 1.	33 V	
2.	$Cr^{3+} + 3e^{-} \Longrightarrow Cr$	- 0.7	74 V	
3.	$Cu^+ + e^- \Longrightarrow Cu$	+ 0.1	52 V	
4.	$Cu^{2+} + 2e^{-} \longrightarrow Cu$	0.34	V	
E ^o for the reaction, $2Cr(s) + 3Cu^{2+}(aq) \Longrightarrow 2Cr^{3+} + 3Cu$ is:				
(A) –	1.08 V (B) $-0.70 V$	(C) 1.08 V	(D) 2.50 V	

Q.8 For a cell reaction, $2Ag^+ + Cu \longrightarrow Cu^{+2} + 2Ag$ schematic diagram indicating migration of cation, anion and electrons is :

53

0.01

0.9 Consider the following equations for a cell reaction $\begin{array}{c} A+B \underbrace{\longrightarrow} C+D \\ 2A+2B \underbrace{\longrightarrow} 2C+2D \\ (A) x = y, K_1 = K_2 \\ \end{array} \begin{array}{c} E^o = x \text{ volt, } K_{eq} = K_1 \\ E^o = y \text{ volt, } K_{eq} = K_2 \\ (B) x = 2y, K_1 = 2K_2 \\ (C) x = y, K_1^2 = K_2 \\ \end{array} \begin{array}{c} \text{then :} \\ (D) x^2 = y, K_1^2 = K_2 \\ (D) x^2 = y, K_1^2 = K_2 \end{array}$ **Q.10** For the cell Hg | Hg,Cl₂ | Cl⁻ (0.1 M) || Cl⁻ (0.01 M) | Pt(Cl₂), E^o is 1.10 V. Hence, E is : (A) 1.1591 V (B) – 1.1591 V (C) 1.0409 V (D) – 1.0409 V When has maximum potential for the half-cell reaction? **Q.11** $2H^+ + 2e^- \longrightarrow H_2$ (B) a solution having pH4 (A) 1.0 M HCl (C) pure water (D) 1.0 M NaOH Q.12 For the half-cell given below, $Pt(H_2) | pH = 2$, cell potential is : 1 atm (A) 0.0591 V (B) 0.0295 V (C) 0.1182 V (D) 0.00 V For the cell prepared from electrode A and B; **Q.13** Electrode A : $Cr_2O_7^{2-} | Cr^{3+}, E^o_{red} = + 1.33 \text{ V}$ and electrode B ; $Fe^{3+} | Fe^{2+}, E^o_{red} = 0.77 \text{ V}$. Which of the following statements are correct? the electrons will flow from B to A when connection are made (A) **(B)** the emf of the cell will be 0.56 V (C) A will be positive electrode (D) none of these Q.14 Consider following sets Zn Fe CuSO₄ II CuSO₄ III CuSO₄ I (blue) (blue) (blue) Blue colour solutions changes to colourless (or fades) in : (A) I, II, III (B) I, II (C) II, III (D) I, III Q.15 Consider following sets Cu Cu AgNÓ₃ ZnSÓ₄ MgCl, Ι Π III (colourless) (colourless) (colourless) Colourless solution changes to blue coloured solution in : (A) I (B) II (C) III (D) I, III When a dilute aqueous Li₂SO₄ solution is electrolysed, the products formed at the anode Q.16 and cathode, respectively, are : (C) SO, and H_2 (A) S and Li $(B) O_2$ and Li $(D) O_2$, and H_2 Q.17 Schematic diagram of an electrolytic-cell is : cations (C) cations (B) (A) anions anions (D) none is correct presentation

LEVEL – II

Q.1 If
$$F_{Pc0,e_{T}}^{r}$$
 is x_{1} , $F_{Pc0,e_{T}}$ is x_{2} , then $F_{Pc0,e_{T},e_{T}}$ will be :
(A) $3x_{2} - 2x_{1}$ (B) $x_{2} - x_{1}$ (C) $x_{2} + x_{1}$ (D) $2x_{1} + 3x_{2}$
Q.2 AG = AH – TAS and AG = AH + T $\left[\frac{d(AG)}{dT}\right]_{p}$ then $\left(\frac{dE_{coll}}{dT}\right)$ is :
(A) $\frac{AS}{nF}$ (B) $\frac{nE}{AS}$ (C) $-nFE_{coll}$ (D) $+nFE_{coll}$
Q.3 $Zn + Cu^{2*}$ (aq) \Longrightarrow $Cu + Zn^{2*}$ (aq)
Reaction quotient is $Q = \frac{[Zn^{2*}]}{[Cu^{2*}]}$. Variation of E_{coll} with log Q is of the type with
OA = 1.10 V.E_{coll} will be 1.159 V when :
(A) $\frac{[Cu^{2*}]}{[Zn^{2*}]} = 0.01$ (B) $\frac{[Zn^{2*}]}{[Cu^{2*}]} = 0.01$ (C) $\frac{[Zn^{2*}]}{[Cu^{2*}]} = 0.1$ (D) $\frac{[Zn^{2*}]}{[Cu^{2*}]} = 1$
Q.4 $Cu^{2*} + 2e \longrightarrow Cu$. For this graph between log (Cu^{2*}) versus E_{coll} is a straight line of intercept
0.34 V then electrode potential of the half-cell Cu/Cu² (0.1 M) will be :
(A) $0.34 + \frac{0.0591}{2}$ (B) $-0.34 - \frac{0.0591}{2}$ (C) 0.34 (D) $-0.34 + \frac{0.0591}{2}$
Q.5 For the half cell, $\bigcup_{H} \bigoplus_{G} \bigoplus_{G} + 2H^{2} + 2e^{-}$. $E^{0} = 1.30 V$
At pH = 2, electrode potential is :
(A) $1.36V$ (B) $1.30 V$ (C) $1.42 V$ (D) $1.20 V$
Q.6 In acidic medium MnO₄ is an oxidising agent. MnO₄ + 8H^{+} + 5e^{-} Mn^{2*} + 4H_{1}O. If
H⁺ in concentration is doubled, electrode potential of the half-cell MO₇, Ma²/Pt will :
(A) increase by 28.46 mV (D) decrease by 142.30 mV
Q.7 100 mL of a buffer of 1 M NH_3(aq) and 1 M NH_4^{-1}(aq) are placed in two voltaic cells
separately. A current of 1.5 A is passed through both cells for 20 minutes. If electrolysis of
water only takes place 2H_{0}O + 4e \rightarrow 4OH (RHS)
 $2H_{2}O \rightarrow 4H^{+} + O_{2} + 4e^{-}$ (LHS)
then pH of the :
(A) LHS half-cell will increase (D) both half-cell will increase
(C) both half-cells will increase (D) both half-cells will decrease
Q.8 Ig equivalent of Na metal is formed from electrolysis of fused NaCl. Number of mol of
Al from fused Na₃AlF₆ will be :
(A) 1 (B) 3 (C) 1/3 (D) 2

Q.9 Electrode potentials of the given half-cells : $Pt(H_2) | H^+(C_1);$ $Pt(Cl_{2}) | Cl^{-}(C_{2}); Ag | Ag^{+}(C_{3})$ \mathbf{p}_1 \mathbf{p}_2 (III) (II) (I) (A) will increase on increasing $C_1, C_2 \& C_3$ (B) will decrease on increasing $C_1, C_2 \& C_3$ (C) both (A) and (B)(D) none of these **Q.10** In the following electrochemical cell: $Zn | Zn^{+2} || H^+ | Pt(H_2)$; $E_{cell}^{\circ} = E_{cell}$. (-) This will be when: $[Zn^{2+}] = [H^+] = 1M$ and $p_{H2} = 1atm$ (A) $[Zn^{2+}] = 0.01 \text{ M}, [H^+] = 0.1 \text{ M} \text{ and } p_{H^2} = 1 \text{ atm}$ **(B)** $[Zn^{2+}] = 1$ M, $[H^+] = 0.1$ M and $p_{H^2} = 0.01$ atm (C) (D) all of the above If the Pb^{2+} concentration is maintained at 1.0 M, what is the $[Cu^{2+}]$ when the cell potential Q.11 drops to zero ? $E_{cell}^{o} = 0.473 \text{ V}$, $Pb \mid Pb^{2+}(1.0 \text{ M}) \parallel Cu^{2+}(1.0 \times 10^{-4} \text{ M}) \mid Cu(s)$ (A) 1×10^{-16} M (B) 1×10^{16} M (C) 1.0×10^{-14} M (D) 1.0×10^{14} M **Q.12** Pt(H₂) | 0.01M H⁺ || 0.1M H⁺ | Pt(H₂). If $E_{cell} = 0.00 V$, than $\frac{\chi}{\gamma}$ is : x atm y atm (A) 100 (C) 0.01 (B) 10 (D) 0.1 $Pt(H_2) | pH = 2$, cell potential is : **Q.13** For the half-cell given, 1 atm (A) 0.0591 V (B) 0.0295 V (C) 0.1182 V (D) 0.00 V **Q.14** For the cell prepared from electrode A and B; Electrode A : $Cr_2O_7^{2-} | Cr^{3+}, E^o_{red} = + 1.33 V$ and electrode B ; $Fe^{3+} | Fe^{2+}, E^o_{red} = 0.77 V$. Which of the following statements are correct? the electrons will flow from B to A when connection are made (A) **(B)** the emf of the cell will be 0.56 V (C) A will be positive electrode (D) none of these Q.15 During discharging of lead-storage acid battery following reaction takes place : $Pb(s) + PbO_2(s) + 2H_2SO_4 \longrightarrow 2PbSO_4(s) + 2H_2O_4(s)$ If 2.5 amp of current is drawn for 965 minutes, H₂SO₄ consumed is : (A) 0.75 mol (B) 3.00 mol (C) 1.50 mol (D) 4.50 mol Q.16 Following behaves as S.H.E. at a pressure $Pt, H_2 | H_2O$: (B) 10^{-7} atm (C) 10^7 atm (D) 10^{-14} atm (A) 1 atm

LEVEL – III

- Q.1 Which of the following statements is correct for ionic mobility?
 - (A) It depends upon the voltage across the electrodes
 - (B) Lower the voltage, higher is the velocity.
 - (C) Ionic velocity per unit electric field strength is constant.
 - (D) All of these
- **Q.2** Which of the following units is correctly matched?
 - (A) SI unit of conductivity (k) \longrightarrow siemens per meter (Sm⁻¹)
 - (B) SI units of molar conductivity \rightarrow siemens squared per mol (S m² mol⁻¹)
 - (C) SI unit of ionic mobility \longrightarrow m V⁻¹S⁻¹
 - (D) All of these
- Q.3 According to Grotthuss model :
 - (A) there is no coordinated motion of a proton along a chain of water molecules.
 - (B) there is a rapid hoping between neighbouring sites of water molecules.
 - (C) the system $H^+(H_2O)_4$ has low activation energy
 - (D) none of these
- Q.4 Oxygen and hydrogen gas are produced at the anode and cathode during the electrolysis of dilute aqueous solutions of :

(A)
$$Na_2SO_4$$
 (B) AgNO₃ (C) H_2SO_4 (D) NaOH

- Q.5 Which of the following statements are correct?
 - (A) The electrolysis of aqueous NaCl produces hydrogen gas at the cathode and chlorine gas at the anode.
 - (B) The electrolysis of a dilute solution of sodium fluoride produces oxygen gas at the anode and O_2 gas at the cathode.
 - (C) The electrolysis of concentrated sulphuric acid produces SO_2 gas at the anode and O_2 gas at the cathode.
 - (D) After the electrolysis of aqueous sodium sulphate, the solution becomes acidic.
- Q.6 Which of the following cell reactions correctly represent the electrolysis of water? (A) $2H^+ + 2e \longrightarrow H_2(g)$ (B) $2H_2O + 2e \longrightarrow H_2(g) + 2(OH^-)$ (C) $4(OH^-) \longrightarrow 2H_2O + O_2(g) + 4e$ (D) $2H_2O \longrightarrow O2(g) + 4H^+ + 4e$
- Q.7 Which of the following statements are correct?
 - (A) The electrolysis of concentrated H_2SO_4 at 0–5°C using a Pt electrode produces $H_2S_2O_8$.
 - (B) The electrolysis of a brine solution produces NaClO₃ and NaClO.
 - (C) The electrolysis of a $CuSO_4$ solution using Pt electrodes causes the liberation of O_2 at the anode and the deposition of copper at the cathode
 - (D) All electrolytic reactions are redox reactions.
- **Q.8** How much charge must be supplied to a cell for the electrolytic production of 245 g $NaClO_4$ from $NaClO_3$? Because of a side reaction, the anode efficiency for the desired reaction is 60 %?

(A) 6.43×10^5 C (B) 6.67 F (C) 6.43×106 C (D) 66.67 F

- Q.9 In an electrochemical process, a slat bridge is used :
 - (A) to maintain electroneutrality in each solution
 - (B) to complete the circuit so that current can flow
 - (C) as an oxidizing agent
 - (D) as a colour indicator

Q.11

Q.10 Consider the cell :

 $Cd(s) | Cd^{2+} (1.0M) || Cu^{2+} (1.0M) | Cu(s)$

If we wish to make a cell with a more positive voltage using the same substances, we should (A) increase $[Cd^{2+}]$ as well as $[Cu^{2+}]$ to 2.0 M (B) reduce only $[Cd^{2+}]$ to 0.1 M

- (C) decrease $[Cd^{2+}]$ as well as $[Cu^{2+}]$ to 0.1 M
- (D) increase only $[Cu^{2+}]$ to 2.0 M
- A concentration cell is a galvanic cell in which :
- the electrode material and the solutions in both half-cells are composed of the same (A) substances
- only the concentrations of the two solutions differ **(B)**
- (C) $\Delta E_{cell}^0 = 0$

the Nernst equation reduces to $\Delta E_{cell} = -\left(\frac{0.0592}{n}\right) \log Q$ at 25°C (D)

- Q.12 Which of the following statements are correct?
 - A reaction is spontaneous from left to right if $K_{eq} > Q$, in which case $\Delta E_{cell} > 0$. (A)
 - A reaction occurs from right to left if $K_{eq} < Q$, in which case $\Delta E_{cell} < 0$. **(B)**
 - If the system is at equilibrium, no net reaction occurs. (C)
 - (D) ΔE_{cell} is temperature-independent.
- Which of the following are concentration cells? Q.13
 - (A) $PtH_2 \underset{p_1}{g} | \underset{(m)}{HC1} | \underset{p_2}{H_2}(g), Pt$

(B) Cd,(Hg) | Cd²⁺ | (Hg),Cd

$$a_1$$
 (m) a_2

(D) Ag(s), AgCl(s) || HCl || HCl || AgCl(s), Ag(s) || HCl || HCl || AgCl(s), Ag(s) || HCl |

- (C) $Zn(s) | Zn_{m_1}^{2+} || Cu_{m_2}^{2+} |Cu$
- **Q.14** $Pb(s)|PbSO_4|PbI_2|Pb(s)$ saturated saturated solution solution

Which of the following expressions represent the emf of the above cell at 25 °C?

(A)
$$E = \frac{0.0592}{2} \log \frac{(a_{pb^{2+}})_2}{(a_{pb^{2+}})_1}$$
 (B) $E = \frac{0.0592}{2} \log \frac{(a_{pb^{2+}})_1}{(a_{pb^{2+}})_2}$
(C) $E = \frac{0.0592}{2} \log \frac{[K_{sp}(PbI_2)]^{1/3}}{[K_{sp}(PbSO_4)]^{1/2}}$ (D) $E = \frac{0.0592}{2} \log \frac{K_{sp}(PbI_2)}{K_{sp}(PbSO_4)}$

Q.15 Which of the following represent electrodes of the second king? (A)Ag(s)|AgCl(s), Cl(B) $Cu(s) | CuSO_4(aq), SO_4^{2-}$ (D) $Pb(s) + PbSO_{4}(s), SO_{4}^{2}$ (C) Hg(1) | Hg₂Cl₂(s), Cl⁻

LEVEL - IV

Q.1	Match	the following :		
		Column I		
	(i)	Faraday's first l	aw	(a)
	(ii)	One Faraday		(b)
	(iii)	Cell constant		(c)
	(iv)	Conductivity		(d)
	(v)	Molar conductiv	vity	(e)
	(A) i-a	, ii-b, iii-c, iv-e,	v-d	(B) i-
	(C) i-a	, ii-b, iii-e, iv-d,	V-C	(D) i-
Q.2	Match	the following :		
		Column I		
	(i)	Cell constant		(a)
	(ii)	λ_{m}		(b)
	(iii)	λ_{eq}		(c)
	(iv)	k		(d)
	(v)	ρ		(e)
		, ii-d, iii-e, iv-c,		(B) i-
	(C) 1-d	, ii-b, iii-a, iv-c,	v-e	(D) i-
Q.3	Match	the following :		
		Column I		
	Electro	•	Cathode	
(i)	Aq Cı	2	Pt	(a)
(ii)	Aq Cı	2	Cu	(b)
(iii) (i=r)	Aq C	2	Ag	(c)
(iv)		uCl ₂ Ag	Cu	(\mathbf{d})
		, ii-d, iii-a, iv-a		(B) i-a, ii-b, i (D) i b ii a i
	(C) 1-a	, ii-b, iii-a, iv-d		(D) i-b, ii-a, i
Q.4	Match	the following :		
	Column I			
	Electrode			
	(i)	$H^{+}(1M)$	(a)	
	(ii) $Zn(s) Zn^{2+} Cu^{2+} Cu(s)$ (iii) Calomel electrode (iv) $Ag AgCl Cl^{-}(1M)$			(b)
				(c)
				(d)
	(A) i-b	c, ii-d, iii-a, iv-a		(B) i-bc, ii-a,
	(C) i-ac, ii-d, iii-b, iv-a (D) i-bc, ii-d,			
				· · · · ·

Column II

 $w = Z \times I \times t$

(c)
$$\frac{1}{\text{Resistance}}$$

(d)
$$\frac{K \times 1000}{C}$$

l/A

i-b, ii-a, iii-e, iv-c, v-d

-b, ii-a, iii-d, iv-c, v-e

Column II

- $\Omega \, cm$
- cm^{-1}
- $S \ cm^{-1}$
- $S cm^2 mol^{-1}$
- S m² eq⁻¹
- -a, ii-d, iii-c, iv-e, v-b
- -b, ii-d, iii-a, iv-e, v-c

Column II Product at cathode at anode Cu(s) Cu^{++} $Cl_2(g)$ Cu(s) $\bar{Cu^{++}}$ Cu(s) Cu(s) Ag^{++} iii-a, iv-d

iii-a, iv-d

Column II Туре

- Secondary refrence electrode
- Primary reference electrode
- NHE
- Denial cell

iii-d, iv-a l, iii-a, iv-b

Q.5 Match the following :

- Column I
- (i) Salt bridge
- (ii) nFE
- (iii) Corrosion
- (iv) $Cu(s) | Cu^{++} || Zn^{++} | Zn(s)$
- (A) i-d, ii-c, iii-b, iv-a
- (C) i-b, ii-c, iii-d, iv-a

Q.6 Match the following :

Column I

- (i) Loss of electron
- (ii) Gain of electron
- (iii) Flow of current
- (iv) Flow of electron
- (A) i-c, ii-c, iii-a, iv-d
- (C) i-d, ii-c, iii-a, iv-c

Column II

- (a) $+\Delta G$
- (b) Diffusion in ions
- (c) $-\Delta G$
- (d) $Fe_2O_3 \times H_2O$
- (B) i-c, ii-b, iii-a, iv-d
- (D) i-a, ii-c, iii-d, iv-b

Column II

- (a) Cathode to anode
- (b) Anode to cathode
- (c) Cathode
- (d) Anode
- (B) i-a, ii-c, iii-d, iv-c
- (D) i-c, ii-a, iii-d, iv-c

SUBJECTIVE QUESTIONS

LEVEL – I

0.1 Potassium chlorate is prepared by electrolysis of KCl in basic solution, $6OH^- + Cl^- \longrightarrow ClO_3^- + 3H_2O + 6e^-$

If only 60 % of the current is utilised in the reaction, what time will be required to produce 10 g of KClO₃ using a current of 2 amp?

- **Q.2** After electrolysis of a sodium chloride (NaCl) solution with inert electrodes for a certain period of time, 600 ml of the solution was left which was found to be 1 N in sodium hydroxide. During the same time 31.8 g of Cu was deposited in a Cu voltameter in series with the electrolytic cell. Calculate the percentage of theoretical yield of the sodium hydroxide obtained.
- **Q.3** A spoon used as a cathode is dipped in AgNO₃ solution and a current of 0.2 amp is passed for one hour. Calculate :
 - **(a)** How much silver plating has occurred?
 - How many electrons were involved in the process? **(b)**
 - What amount of copper would have been plated under similar conditions? (c)
- Q.4 A steady current passing through a solution of AgNO₃ solution deposits 0.50 g of Ag in 1 hr. Calculate the number of coulomb. What volume of hydrogen at 27°C and 750 mm pressure would the same current liberates in one hour?
- Q.5 In an electrolysis experiment, current was passed for 5 hours through two cells connected in series. The first cell contains a solution of gold and second contains CuSO₄ solution. 9.85 g of gold was deposited in the first cell. If the oxidation number of gold is +3, find the amount of Cu deposited on the cathode of second cell. Also calculate the magnitude of the current in ampere.
- Q.6 Electric current is passed through two cells 'A' and 'B' in series. Cell 'A' contains an aqueous solution of Ag₂SO₄ and platinum electrodes. The cell 'B' contains aqueous solution of CuSO₄ and Cu electrodes. The current is passed till 1.6 g of oxygen is liberated at the anode of cell 'A'.
 - Give equations for the reaction taking place at each electrode. (i)
 - Calculate the quantities of substances deposited at the cathodes of the two cells . (ii)
- **Q.7** Anthrancene can be oxidised anodically to anthraquinone. What weight of anthraquinone can be produced by the passage of a current of 1 amp for 60 minutes if the current efficiency is 100%?
- **Q.8** Calculate the e.m.f. of the cell at 25°C. Pt (H_2) | HC1 | | HC1 | Pt (H_2) (1 atm) (pH 2.95) (pH 1.47) (1 atm)
- 0.9 Calculate the reduction potential for the following half cells at 25°C
 - $E_{Mg|Mg^{2+}}^{0} = +2.36 \text{ V}$ $E_{Cl_{2}|Cl^{-}}^{0} = +1.36 \text{ V}$ $Mg \mid Mg^{2+} (1 \times 10^{-4} M)$ (i)
 - $Cl_{2} | Cl^{-} (2 \times 10^{-5} M)$ **(ii)**

(iii) Pt | Fe²⁺ (0.1 M), Fe³⁺ (0.01 M)
$$E_{Fe^{+3}|Fe^{+2}}^{0} = + 0.77 V$$

Q.10 What is K_c for the following reaction at 25° C?

$$\begin{array}{l} Cu^{2+} (aq) + Sn^{2+} (aq) \longrightarrow Sn^{4+} (aq) + Cu(s) \\ E^{0}_{Cu^{+2}|Cu} = 0.34 \text{ volt} , \quad E^{0}_{Sn^{+4}|Sn^{2}} = 0.15 \text{ volt} \end{array}$$

LEVEL – II

- Q.1 Under standard conditions for all concentrations, the following reaction is spontaneous at 25 °C, $O_2(g) + 4H^+(aq) + 4Br^-(aq) \longrightarrow 2H_2O(l) + 2Br_2(l)$
 - (a) If $[H^{\dagger}]$ is decreased so that the pH = 3.60, what value will E_{cell} have and will the reaction be spontaneous at this $[H^{\dagger}]$?
 - (b) If $[H^+]$ is adjusted by adding a buffer of 0.10 M NaCNO and 0.10 M HCNO. ($K_a = 3.5 \times 10^{-4}$), what value will E_{cell} have and will the reaction be spontaneous at this $[H^+]$? $E_{cell}^{\circ} = 0.173$ V.
- **Q.2** The emf of the following cell is -0.46 V $Pt(H_2) | HSO_3^{-}(0.4 \text{ M}), SO_3^{2-}(6.4 \times 10^{-3} \text{ M}) || Zn^{2+}(0.3 \text{ M}) || Zn$ If $E^o_{Zn^{2+}/Zn} = -0.76 \text{ V}$. Calculate pK_a of HSO₃⁻, i.e., for the equilibrium HSO₃⁻ \longrightarrow H⁺ + SO₃²⁻
- **Q.3** At equimolar concentrations of Fe²⁺ and Fe³⁺, what must [Ag⁺] be, so that the voltage of the galvanic cell made from Ag⁺/Ag and Fe³⁺/Fe²⁺ electrodes equals zero. The reaction is : Fe²⁺ + Ag⁺ \longrightarrow Fe³⁺ + Ag. Determine the equilibrium constant at 25°C for the reaction. [Given $E^{\circ}_{Ag^{+}/Ag} = 0.799$ volt and $E^{\circ}_{Fe^{3+}/Fe^{2+}} = 0.771$ volt]
- **Q.4** The e.m.f. of the cell Ag |AgCl (s) | KCl solution | $Hg_2Cl_2(s)$ | Hg is 0.0455 V at 298 K and the temperature co-efficient is 3.38×10^{-4} V K⁻¹. What is the reaction taking place in the cell and what are free energy, enthalpy and entropy changes at 298 K?

Q.5 For the cell :

Pt | $H_2(1 \text{ atm})$ | $CH_3COONa(10^{-3} \text{ M})$ || $NH_4Cl(0.01 \text{ M})$ + $NH_4OH(0.2 \text{ M})$ | $H_2(1 \text{ atm})$ | Pt. $K_a(CH_3COOH) = 1.8 \times 10^{-5}$, $K_b(NH_4OH) = 1.8 \times 10^{-5}$. In the anode neglect (H⁺) from oxidation of H_2 . Calculate the cell potential.

Q.6 Consider the cell :

 $\begin{array}{l} \mbox{Pt} \mid \mbox{Cu}^{+}(\mbox{aq}) \ (1M), \ \mbox{Cu}^{2+}(\mbox{aq}) \ (1M) \mid \mbox{Fe}^{3+}(\mbox{aq}) \ (1M), \ \mbox{Fe}^{2+}(\mbox{aq}) \ (1M) \mid \mbox{Pt}. \\ \mbox{Given}: & \mbox{E}^{\circ}(\mbox{Fe}^{3+}/\mbox{Fe}) = -0.036 \ \mbox{V}, \ \mbox{E}^{\circ}(\mbox{Cu}^{+}/\mbox{Cu}) = 0.521 \ \mbox{V} \\ \mbox{E}^{\circ}(\mbox{Fe}^{2+}/\mbox{Fe}) = -0.440 \ \mbox{V}, \ \mbox{E}_{cell} = 0.618 \ \mbox{V} \\ \mbox{Calculate the equilibrium constant for the reaction}, \ \mbox{Cu} + \mbox{Cu}^{2+} \Longrightarrow 2\ \mbox{Cu}^{+} \end{array}$

Q.7 Calculate the minimum mass of NaOH required to be added in R.H.S. to consume all the H⁺ present in R.H.S. of the cell of emf + 0.701 volt at 25 °C before its use . Also report the emf of the cell after addition of NaOH .

Zn | Zn²⁺ || HC1 | Pt(H₂g) ; $E^{o}_{Zn/Zn2+} = 0.760 V$ 0.1 M 1 litre 1 atm

Q.8 A constant current flowed for 2 hours through a potassium iodide solution oxidising the iodide ion to iodine $(2I^- \longrightarrow I_2 + 2e^-)$ At the end of the experiment, the iodine was titrated with 21.75 ml of 0.0831 M sodium thiosulphate solution . $(I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-})$ What was the average rate of current flow in ampere ?

Q.9 40 ml of 0.125 M of NiSO₄ solution is electrolysed by a current of 0.05 amp for 40 minutes.

- (i) Write equation for the reactions occurring at each electrode.
- (ii) How many coulomb of electricity passed through the solution
- (iii) How many grams of the product deposited on the cathode?
- (iv) How long will the same current have to pass through the solution to remove completely the metal ions from the solution ?
- (v) At the end of electrolysis how many grams of the product would appear at the anode?
- **Q.10** An electric current is passed through a solution of (i) silver nitrate (ii) solution of 10 g of copper sulphate ($CuSO_4.5H_2O$) crystals in 500 ml of water, platinum electrodes being used in each case. After 30 minute it was found that 1.307 g of silver has been deposited. What was the concentration of copper, expressed as grams of copper per litre in the copper sulphate solution after electrolysis?

ELECTROCHEMISTRY 63						
OBJECTIVE QUESTIONS						
			LEVEL – I			
1. C	2. B	3. B	4. A	5. A	6. D	7. C
8. B	9. C	10. B	11. A	12. C	13. AC	14. D
15. A	16. D	17. B				
LEVEL – II						
1. A	2. A	3. B	4. D	5. C	6. A	7. B
8. C	9. D	10. D	11. A	12. D	13. C	14. AC
15. C	16. D					
LEVEL – III						
1. AC	2. AB	3. ABC	4. ABCD	5. AB	6. E	BC
7. ABCD	8. AB	9. AB	10. BC	11. ABCD	12.	ABC
13. ABD	14. AC	15. ACD				
LEVEL – III						
1. B	2. A	3. D	4. A	5. C	6. C	1

SUBJECTIVE QUESTIONS

LEVEL - I

1. 10.	95 hours	2. 60 %	3. 0.805 g, 4.5×10^{21} , 0.237 g
4. 446	5.7 coulomb, 57.7 ml		5. 4.765g, 0.8037 amp
6. (i)) In cell 'A' : $2H_2O$ –	$\longrightarrow O_2(g) + 4H^+ + 4e$	at anode $Ag^+ + e \longrightarrow Ag$ at cathode
	In cell 'B' : Cu—	$\rightarrow Cu^{2+} + 2e$	at anode $Cu^{2+} + 2e \longrightarrow Cu$ at cathe

- In cell 'B' : Cu \longrightarrow Cu²⁺ + 2e at anode Cu²⁺ + 2e \longrightarrow Cu at cathode (ii) Ag = 21.6 g; Cu = 6.35 g
- **7.** 1.2932 g **8.** 0.0874 volt
- **9.** (i) -2.4782 V (ii) 1.6377 V (iii) 0.7109 V **10.** K_c = 2.63×10^{6}

LEVEL-II

1. (a) -0.04 volt (non spontaneous)(b) -0.03 volt (non spontaneous)2. $K_a = 7.36 \times 10^{-11}$, $pK_a = 7.13$ 3. $[Ag^+] = 0.34$, K = 3.04. $\Delta G = -8780$ J, $\Delta H = 10650$ J, $\Delta S = 65.22$ J K⁻¹5. $E_{cell} = -0.158$ V6. $K = 1.72 \times 10^6$ 7. Mass of NaOH = 1.264 gm, 0.3759 volt8. 0.0242 amp9. (ii) 120 (iii) 0.037 g (iv) 19300 s (v) 0.08 g10. 4.32 g/litre