MATRICES AND DETERMINA

BASIC CONCEPTS

1. Matrix A matrix is a rectangular array of numbers, real or complex. The numbers are called the elements of the matrix (sometimes entries in the matrix).

$$\mathbf{2. \ A \ matrix \ A}_{mn} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & a_{i3} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \text{ is called matrix of order } m \times n, m \text{ representing number of rows and}$$

n, the number of columns. It is also denoted by $A = (a_{ij})_{m \times n}$.

- 3. Square matrix When number of rows in a matrix equals number of columns in it, the matrix is called a square
- 4. Row matrix A matrix having one row and any number of columns is called a row matrix. In other words, matrix of order $1 \times n$ is always a row matrix.
- 5. Column matrix A matrix having any number of rows but only one column is called a column matrix. Thus a matrix of order $m \times 1$ is always a column matrix.
- 6. Zero matrix (Null matrix) A matrix is said to be a zero matrix or null matrix if all its elements are zeroes.
- **7.** Diagonal matrix A square matrix $[a_{ij}]$ is said to be a diagonal matrix if $a_{ij} = 0$ for $i \neq j$.
- 8. Identity matrix (Unit matrix) A square matrix having the elements in main diagonal as 1 and rest are zeroes is called an identity or unit matrix.
- 9. Scalar matrix A square matrix whose all non-diagonal elements are zeroes and diagonal elements are equal, is called a scalar matrix. In other words, if $A = [a_{ij}]$ is a square matrix and $a_{ij} = \begin{cases} \alpha & i = j \\ 0 & i \neq j \end{cases}$, then A is a scalar matrix.

10.
$$A = [a_{ij}] = [b_{ij}] = B$$
 if

- (i) A and B are of the same order
 - (ii) $a_{ij} = b_{ij}$ for all i and j.
- **11.** If A is an $m \times n$ matrix and k is a scalar, then

$$kA = k[a_{ij}]_{m \times n} = [k(a_{ij})]_{m \times n}$$

- **12.** -A = (-1) A.
- **13.** Addition of two matrices Let A and B be two $m \times n$ matrices given by $A = [a_{ij}]$ and $B = [b_{ij}]$, then their sum A + B is given by $A + B = [a_{ij} + b_{ij}]_{m \times n}$

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

- **14.** A B = A + (-1) B where A and B are matrices of the same order.
- **15.** A + B = B + A, A + (B + C) = (A + B) + C where A, B and C are matrices of the same order.
- **16.** k(A + B) = kA + kB where k is a constant and A and B are two matrices of the same order.
- **17.** (k+l) A = k A + l A where k and l are constants.
- **18.** Product of matrices Let $A = [a_{ij}]_{m \times n}$, $B = [b_{jk}]_{n \times p}$, then

at (1-) zi (nacasasatah at tauta
$$AB = C = [c_{ik}]_{m \times p}$$
 where $c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$ (associated as van in (a)

19.
$$A(BC) = (AB)C, A(B+C) = AB + AC$$

 $(A+B)C = AC + BC.$

- **20.** If A and B are two matrices, then $AB \neq BA$. In some cases AB may be equal to BA but not always.
- 21. Transpose of a matrix The matrix obtained by interchanging the rows and columns of a matrix A is called the transpose of matrix A and is denoted by A' or AT.

In other words, if $A = [a_{ii}]_{m \times n}$, then $A' = [a_{ii}]_{n \times m}$.

22. Properties of transpose of a matrix

$$(a) (A')' = A$$

(b)
$$(A+B)' = A' + B'$$
 (c) $(AB)' = B'A'$

$$(c) (AB)' = B'A$$

$$(c) (kA)' = kA'$$

- **23.** Symmetric matrix A is said to be symmetric if A' = A, i.e., $[a_{ii}] = [a_{ij}]$
- **24.** Skew symmetric matrix A square matrix A is said to be skew symmetric if A' = -A, i.e., if $A = [a_{ij}]$, then $[a_{ii}] = [-a_{ii}].$
- 25. Elements in the main diagonal of a skew symmetric matrix are all zeroes.
- 26. A matrix which is symmetric as well as skew symmetric is a zero square matrix.
- 27. For any square matrix A, A + A' is symmetric and A A' is a skew symmetric matrix.
- 28. Any square matrix A can be expressed as the sum of a symmetric and skew symmetric matrix, i.e.,

$$A = \frac{A + A'}{2} + \frac{A - A'}{2}.$$

29. Elementary operations of a matrix

(i)
$$R_i \leftrightarrow R_j$$
 or $C_i \leftrightarrow C_j$

(ii)
$$R_i \rightarrow k R_i$$
 or $C_i \leftrightarrow k C_i$

(iii)
$$R_i \rightarrow R_i + k R_j$$
 or $C_i \rightarrow C_i + k C_j$.

- **30.** If A and B are two square matrices such that AB = BA = I, then B is the inverse matrix of A and is denoted by A-1 and A is the inverse of B.
- 31. Inverse of a square matrix, if it exists, is unique.
- **32.** Determinant of a matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is given by

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{12} a_{22}$$

and determinant of a matrix $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ is given by

$$|\mathbf{A}| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

- **33.** The value of the determinant $\begin{vmatrix} p & q \end{vmatrix} = a(qn mr) b(pn lr) + c(pm lq)$.
- **34.** Minor of an element a_{ij} in |A| is the value of the determinant obtained by deleting the ith row and jth column of IA I in which the element a_{ii} lies and is denoted by M_{ii} .
- **35.** Cofactor of an element a_{ii} in |A | is given by

$$\mathbf{C}_{ii} = (-1)^{i+j} \mathbf{M}_{ii}$$

- 36. Properties of determinants
 - (a) If the rows and columns of a determinant are interchanged, its value remains unaltered.
 - (b) If two rows (columns) of a determinant are identical, its value is zero.
 - (c) If any two rows (columns) of a determinant are interchanged, the value of the determinant is (-1) times the original determinant.

- (d) If all the elements of one row (column) of a determinant are multiplied by k, the value of the new determinant is k times the original determinant.
- (e) If, to the elements of a row (or column) of a determinant are added k times the corresponding elements of another row (or column), the value of the determinant remains unchanged.
- (f) The sum of the products of the elements of any row (column) with their corresponding cofactors is equal to the value of the determinant.
- (g) The sum of the products of the elements of any row (column) with the cofactors of the corresponding elements of any other row (column) is zero.
- **37.** Area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

- **38.** Adjoint of a matrix Let $A = (a_{ij})_{m \times n}$ be a square matrix and c_{ij} be cofactor of a_{ij} in |A|. Then adj $A = [c_{ii}]'$.
- 39. Properties of adjoint of a matrix

$$(i) A.(adj A) = (adj A). A = |A|I$$

$$(ii)$$
 adj $(AB) = (adj B).(adj A)$

- **40.** Singular and non-singular matrices A matrix A is singular if |A| = 0 and it is non-singular if $|A| \neq 0$.
- 41. Inverse of a matrix A square matrix A is said to be invertible if there exists a square matrix B of the same order such that AB = BA = I and we write

$$A^{-1} = B.$$

 A^{-1} exists only if $|A| \neq 0$

and
$$A^{-1} = \frac{\text{adj } A}{\mid A \mid} = \frac{1}{\mid A \mid} \begin{vmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{vmatrix}$$

- **42.** $(AB)^{-1} = B^{-1} A^{-1}$.
- **43.** Solution of system of equations by matrix method is $|y| = A^{-1}B$, where A is matrix of coefficients of x, y and z
- and B is matrix of the constants. 44. In case | A | = 0, then equations are either dependent or inconsistent according as the product (adj. A) B is a zero matrix or non-zero matrix.
- 45. Solution of a system of homogeneous equations

$$a_1x + b_1y + c_1z = 0$$

 $a_2x + b_2y + c_2z = 0$
 $a_3x + b_3y + c_3z = 0$

There is only a trivial solution x = 0, y = 0, z = 0

if
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$

otherwise there are an infinite number of solutions, i.e., system of equations is dependent.

46. Product of two non-zero matrices can be a zero matrix

i.e.,
$$\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

and
$$\begin{pmatrix} 0 & 4 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Group A (1 mark)

1. Find the values of x and y if

$$2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$$
 (C.B.S.E. 2008)

2. Find the cofactor of a_{12} in the following:

Evaluate each of the following (3-4):

3.
$$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}$$
 (C.B.S.E. 2008)

4.
$$\begin{vmatrix} \sin 30^{\circ} & \cos 30^{\circ} \\ -\sin 60^{\circ} & \cos 60^{\circ} \end{vmatrix}$$
 (C.B.S.E. 2008)

5. For what value of x, is the following matrix singular?

$$\begin{bmatrix} 3-2x & x+1 \\ 2 & 4 \end{bmatrix}$$
 (C.B.S.E. 2008)

6. A matrix A of order 3 × 3 has determinant 4. Find the value of | 3A|. (C.B.S.E. 2008)

7. If
$$\begin{vmatrix} 2x+5 & 3 \\ 5x+2 & 9 \end{vmatrix} = 0$$
, find x. (C.B.S.E. 2008)

8. If
$$\begin{bmatrix} x+3 & 4 \\ y-4 & x+y \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 3 & 9 \end{bmatrix}$$
, find x and y. (C.B.S.E. 2008)

9. Construct a 2×2 matrix whose element a_{ij} is given by $a_{ij} = i + 2j$. (C.B.S.E. 2008)

10. If
$$\begin{bmatrix} x+3y & y \\ 7-x & 4 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 0 & 4 \end{bmatrix}$$
, find the values of x and y. (C.B.S.E. 2008)

11. If
$$\begin{vmatrix} x+2 & 3 \\ x+5 & 4 \end{vmatrix} = 3$$
, find the value of x. (C.B.S.E. 2008)

12. Construct a 2 × 2 matrix A =
$$\begin{bmatrix} a_{ij} \end{bmatrix}$$
 whose elements are given by $a_{ij} = \frac{i}{i}$ (C.B.S.E. 2008 C)

13. If
$$\begin{bmatrix} x+2y & -y \\ 3x & 4 \end{bmatrix} = \begin{bmatrix} -4 & 3 \\ 6 & 4 \end{bmatrix}$$
, find the values of x and y. (C.B.S.E. 2008 C)

14. Evaluate:
$$\begin{vmatrix} 2\cos\theta & -2\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix}$$
 (C.B.S.E. 2008 C)

15. If
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, find $A - B$. (C.B.S.E. 2008 C)

16. If
$$\begin{bmatrix} x+2y & 3y \\ 4x & 2 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 8 & 2 \end{bmatrix}$$
, find the value of x and y. (C.B.S.E. 2008 C)

17. If
$$\begin{vmatrix} x & x \\ 1 & x \end{vmatrix} = \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}$$
, find the value of x. (C.B.S.E. 2008 C)

18. If matrix $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, write AA' where A' is the transpose of matrix A. (C.B.S.E. 2009)

19. Write the value of the determinant

20. If A is an invertible matrix of order 3 and | A | = 5, then find | adj A |. (C.B.S.E. 2009)

21. Find the value of x if

$$\begin{bmatrix} 3x+y & -y \\ 2y-x & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -5 & 3 \end{bmatrix}$$
 (C.B.S.E. 2009)

22. Find the value of x from the following:

$$\begin{vmatrix} x & 4 \\ 2 & 2x \end{vmatrix} = 0 (C.B.S.E. 2009)$$

23. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$$
, then find k if $|2A| = k |A|$. (C.B.S.E. 2009)

24. Write the value of the determinant
$$\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix}$$
. (C.B.S.E. 2009)

25. If
$$A = (a_{ij}) = \begin{vmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{vmatrix}$$

and
$$B = (b_{ij}) = \begin{bmatrix} 2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2 \end{bmatrix}$$
, find $a_{22} + b_{21}$. (C.B.S.E. 2009)

Group B (3 or 4 marks)

26. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I = O$ (C.B.S.E 1992, 2003)

27. Prove that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$
 (C.B.S.E. 1992, 1998 C, 2009)

28. Prove that
$$\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3$$
 (C.B.S.E. 1992)

29. If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
, then verify that A'. $A = I$ (C.B.S.E. 1992)

30. If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find k so that $A^2 = 8A + kI$. (*C.B.S.E. 1993*)

31. Without expanding the determinant show that a + b + c is a factor of the determinant

32. If
$$A = \begin{bmatrix} 0 & -1 & 5 \\ 6 & 3 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 1 & 0 \\ 7 & -6 \end{bmatrix}$ show that $(AB)' = B'A'$. (C.B.S.E. 1993)

33. Without expanding the determinant, prove that
$$\begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} = x^3.$$
 (C.B.S.E. 1993, 2009)

34. If
$$A = \begin{bmatrix} 1 \\ -5 \\ 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 1 & -2 \end{bmatrix}$, verify that $(AB)' = B'A'$. (C.B.S.E. 1994)

35. Find a 2 × 2 matrix B such that B
$$\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
. (*C.B.S.E. 1994, 2009*)

36. Construct a
$$2 \times 2$$
 matrix A = $[a_{ij}]$ whose elements are given by $a_{ij} = \frac{(i+2j)^2}{2}$. (C.B.S.E. 1995)

- 37. Using determinants, find the area of the triangle whose vertices are (-2, 4), (2, -6) and (5, 4). Are the given points collinear? (C.B.S.E. 1995)
- 38. Define a symmetric matrix. Prove that for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, A + A' is a symmetric matrix where A' is transpose of A.
- (C.B.S.E. 1996) 39. Using determinants, find the area of the triangle with vertices (-3, 5), (3 - 6) and (7, 2). (C.B.S.E. 1997)
- **40.** Express the matrix $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix. (C.B.S.E. 1998)
- 41. Compute the adjoint of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$
 and verify that A . (adj A) = | A | I. (C.B.S.E. 1998)

42. For matrix
$$A = \begin{bmatrix} -3 & 6 & 0 \\ 4 & -5 & 8 \\ 0 & -7 & -2 \end{bmatrix}$$
, find $\frac{1}{2}$ (A – A'), where A' is the transpose of the matrix A. (C.B.S.E. 1998 C)

43. If
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix}$, find a matrix C such that $A + B + C$ is a zero matrix.

44. Construct a 2 × 3 matrix whose elements in the *i*th row and *j*th column are given by $a_{ij} = \frac{3i - j}{2}$.

(C.B.S.E. 1999)

(C.B.S.E. 1999)

45. Construct a 2 × 3 matrix whose elements in the *i*th row and *j*th column are given by $a_{ij} = \frac{2i+3j}{2}$.

(C.B.S.E. 1999)

46. Without expanding the determinant, prove that
$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = 0.$$
 (C.B.S.E. 1999 C)

47. If
$$f(x) = x^2 - 4x + 1$$
, find $f(A)$ when $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$. (C.B.S.E. 1999 C)

48. Without expanding the determinant, prove that
$$\begin{vmatrix} \frac{1}{a} & a^2 & bc \\ \frac{1}{b} & b^2 & ca \\ \frac{1}{c} & c^2 & ab \end{vmatrix} = 0.$$
 (C.B.S.E. 1999 C)

49. Find a matrix X such that
$$2A + B + X = O$$
, where $A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$. (C.B.S.E. 2000,2002 C)

50. If
$$A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$, show that $AB \neq BA$. (C.B.S.E. 2000 C)

51. If $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, prove that $A - A^{T}$ is a skew symmetric matrix where A^{T} denotes the transpose of A.

(C.B.S.E. 2001)

52. If $A = \begin{bmatrix} 4 & 1 \\ 5 & 8 \end{bmatrix}$, show that $A + A^{T}$ is a symmetric matrix where A^{T} denotes the transpose of matrix A.

(C.B.S.E. 2001)

53. If
$$A = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$
 and $B = [-2 \ -1 \ -4]$, verify that $(AB)' = B'A'$. (C.B.S.E. 2002)

54. Construct a 2 × 3 marix A, whose elements are given by
$$a_{ij} = \frac{(i-2j)^2}{2}$$
. (C.B.S.E. 2002)

55. From the following equation, find the values of x and y:

$$2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ 15 & 14 \end{bmatrix}$$
 (C.B.S.E. 2002 C)

56. Using the properties of determinants, evaluate the following: $\begin{vmatrix} 0 & ab^2 & ac^2 \\ a^2b & 0 & bc^2 \\ a^2c & cb^2 & 0 \end{vmatrix}$. (C.B.S.E. 2003)

Using the properties of determinants, show that (57-58):

57.
$$\begin{vmatrix} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{vmatrix} = a^2 (a+x+y+z).$$
 (C.B.S.E. 2003)

58.
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ y+z & z+x & x+y \end{vmatrix} = (x-y)(y-z)(z-x)(x+y+z).$$
 (C.B.S.E. 2003, 2005, 2008)

59. Find X such that X.
$$\begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$$
. (C.B.S.E. 2003)

60. Solve for x and y given that

$$\begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 (C.B.S.E. 2003 C)

61. Find the values of a and b for which the following holds

$$\begin{bmatrix} a & b \\ -a & 2b \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
 (C.B.S.E. 2003 C)

62. Express
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
 as the sum of a symmetric and a skew symmetric matrix. (C.B.S.E. 2004)

63. Using the properties of determinants, solve for x

$$\begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0.$$
 (C.B.S.E. 2004, 2005)

64. If
$$A = \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}$$
, find $f(a)$ where $f(x) = x^2 - 5x + 7$. (C.B.S.E. 2004 C)

65. If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
, prove that
$$A^3 - 4A^2 + A = O$$
(C.B.S.E 2005)

66. Show that
$$\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix} = 0$$
 where a, b and c are in A.P. (C.B.S.E. 2005)

67. If
$$A = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$
, $B = [-2 \ -1 \ -4]$, verify that $(AB)' = B'A'$. (C.B.S.E. 2005)

68. If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
, find k so that $A^2 = 8A + kI$. (C.B.S.E. 2005 C)

69. Using the properties of determinants, prove that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$
 (C.B.S.E. 2005 C)

70. Express the matrix
$$\begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$$
 as the sum of a symmetric and a skew symmetric matrix. (C.B.S.E. 2006)

71. Using the properties of determinants, prove that

$$\begin{vmatrix} 3a & -a+b & -a+c \\ a-b & 3b & c-b \\ a-c & b-c & 3c \end{vmatrix} = 3(a+b+c)(ab+bc+ca)$$
 (C.B.S.E. 2006)

72. If a, b and c are in A.P., show that

$$\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix} = 0$$
 (C.B.S.E. 2006)

73. Find the value of x if

$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$$
 (C.B.S.E. 2006 C)

74. Using the properties of determinants, prove that

$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$
 (C.B.S.E. 2006 C)

75. If
$$A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$$
, show that $A^2 - 6A + 17I = O$. (C.B.S.E. 2007)

Hence find A⁻¹.

76. Using the properties of determinants, prove that

$$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx)$$
(C.B.S.E. 2007)

77. Using the properties of determinants, prove that

$$\begin{vmatrix} 1 & bc & bc(b+c) \\ 1 & ca & ca(c+a) \\ 1 & ab & ab(a+b) \end{vmatrix} = 0.$$
 (C.B.S.E. 2007)

Group C (4 marks)

78. Show that
$$A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$$
 satisfies the equation $x^2 - 3x - 7 = 0$. Thus find A^{-1} . (C.B.S.E. 1994)

Using the properties of determinants, show that (79 - 80):

79.
$$\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ca \\ 1 & c & c^2 - ab \end{vmatrix} = 0.$$
 (C.B.S.E. 1995)

80.
$$\begin{vmatrix} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{vmatrix} = 16(3x+4).$$
 (C.B.S.E. 1996)

81. If
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$
, verify $A^2 - 4A - I = O$

where
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Hence find A^{-1} . (C.B.S.E. 1996)

Using the properties of determinants, prove each of the following (82-90):

82.
$$\begin{vmatrix} 1 & x & x^3 \\ 1 & y & y^3 \\ 1 & z & z^3 \end{vmatrix} = (x - y) (y - z) (z - x) (x + y + z).$$
 (C.B.S.E. 1997, 2000)

83.
$$\begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix} = 2(a+b)(b+c)(c+a).$$
 (C.B.S.E. 1998)

84.
$$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3.$$
 (C.B.S.E. 1998, 1999, 2008)

85.
$$\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}.$$
 (C.B.S.E. 1999, 2001, 2007, 2008 C)

86.
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$$
 (C.B.S.E. 2000 C, 2007)

87.
$$\begin{vmatrix} b^2c^2 & bc & b+c \\ c^2a^2 & ca & c+a \\ a^2b^2 & ab & a+b \end{vmatrix} = 0.$$
 (C.B.S.E. 2001 C)

88.
$$\begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} = x^3.$$
 (C.B.S.E. 2002)

89.
$$\begin{vmatrix} 1 & x+y & x^2+y^2 \\ 1 & y+z & y^2+z^2 \\ 1 & z+x & z^2+x^2 \end{vmatrix} = (x-y)(y-z)(z-x).$$
 (C.B.S.E. 2002)

90.
$$\begin{vmatrix} 43 & 3 & 6 \\ 35 & 21 & 4 \\ 17 & 9 & 2 \end{vmatrix} = 0.$$
 (C.B.S.E. 2002 C)

91. Evaluate, using the properties of determinants:
$$\begin{vmatrix} 9 & 9 & 12 \\ 1 & 3 & -4 \\ 1 & 9 & 12 \end{vmatrix}$$
. (C.B.S.E. 2002 C)

92. Using the properties of determinants, prove that

$$\begin{vmatrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{vmatrix} = 4xyz.$$
 (C.B.S.E. 2004 C

93. Let $A = \begin{bmatrix} 4 & 1 & 3 \end{bmatrix}$. Express A as sum of two matrices such that one is symmetric and the other is skew (C.B.S.E. 2008

symmetric.

94. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, verify $A^2 - 4A - 5I = O$. (C.B.S.E. 2008)

95. If
$$x, y, z$$
 are different and $\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$, show that $xyz = -1$. (C.B.S.E. 2008, 2008 C

Using the properties of determinants, prove each of the following (96-99):

96.
$$\begin{vmatrix} a^2+1 & ab & ac \\ ab & b^2+1 & bc \\ ca & cb & c^2+1 \end{vmatrix} = 1 + a^2 + b^2 + c^2.$$
 (C.B.S.E. 2008)

97.
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc + bc + ca + ab.$$
 (C.B.S.E. 2008)

98.
$$\begin{vmatrix} 1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3 \end{vmatrix} = -(a-b)(b-c)(c-a)(a^2 + b^2 + c^2).$$
 (C.B.S.E. 2008)

99.
$$\begin{vmatrix} a & a+b & a+2b \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix} = 9b^2(a+b).$$
 (C.B.S.E. 2008)

100. If a, b and c are all positive and distinct, show that
$$\Delta = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$
 has a negative value. (C.B.S.E. 2006)

101. Solve for x:
$$\begin{vmatrix} 3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0.$$
 (C.B.S.E. 2006)

Using the properties of determinants, prove each of the following (102 - 108):

102.
$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^3)^2$$
(C.B.S.E. 2008 c

103.
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2ab & 1-a^2+b^2 & 2a \end{vmatrix} = (1+a^2+b^2)^3$$
(C.B.S.E. 2008)

104.
$$\begin{vmatrix} x & x^2 & 1 + ax^3 \\ y & y^2 & 1 + ay^3 \\ z & z^2 & 1 + az^3 \end{vmatrix} = (1 + axyz)(x - y)(y - z)(z - x)$$
 (C.B.S.E. 2008 C)

105.
$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2$$
 (C.B.S.E. 2009)

106.
$$\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$$
 (C.B.S.E. 2009)

107.
$$\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 1+3p+2q \\ 3 & 6+3p & 1+6p+3q \end{vmatrix} = 1$$
 (C.B.S.E. 2009)

108.
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ba & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$
 (C.B.S.E. 2009)

Group D (6 marks)

109. Solve the following system of equations by matrix method:

$$3x + 4y + 7z = 14$$

 $2x - y + 3z = 4$
 $x + 2y - 3z = 0$ (C.B.S.E. 1992)

110. Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{bmatrix}$

Hence solve the following system of linear equations:

$$x + 2y + 5z = 10$$

 $x - y - z = -2$
 $2x + 3y - z = -11$ (C.B.S.E. 1993)

Solve each of the following system of equations, using matrix method (111 – 113):

111.
$$6x - 12y + 25z = 4$$

 $4x + 15y - 20z = 3$
 $2x + 18y + 15z = 10$ (C.B.S.E. 1994)

112.
$$x + 2y + z = 7$$

 $x + 3z = 11$
 $2x - 3y = 1$
113. $3x - 4y + 2z = -1$
(C.B.S.E. 1995, 2002, 2003)

$$2x + 3y + 5z = 7$$

 $x + z = 2$ (C.B.S.E. 1996)

114. If
$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix}$$
, find A^{-1} .

Using A^{-1} , solve the system of linear equations

$$x - 2y = 10$$

 $2x + y + 3z = 8$
 $-2y + z = 7$ (C.B.S.E. 1997)

115. If
$$A = \begin{bmatrix} 8 & -4 & 1 \\ 10 & 0 & 6 \\ 8 & 1 & 6 \end{bmatrix}$$
, find A^{-1} .

Using A⁻¹, solve the following system of equations:

$$8x - 4y + z = 5$$

$$10x + 6z = 4$$

$$8x + y + 6z = \frac{5}{2}$$
(C.B.S.E. 1998 C)

116. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, find A^{-1} and hence prove that $A^2 - 4A - 5I = O$. (C.B.S.E. 1999)

117. Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Also show that $A^{-1} = \frac{A^2 - 3I}{2}$. (C.B.S.E. 1999)

Using matrix method, solve each of the following system of equations (118 - 126):

118.
$$2x-z=3$$

 $5x+y=7$
 $y+3z=-1$
119. $x+2y-3z=6$
 $3x+2y-2z=3$
 $2x-y+z=2$
120. $x+y+z=1$
 $x-2y+3z=2$
(C.B.S.E. 2000, 2007)
121. $x-y+z=3$
 $2x+y-z=2$

$$x-2y+3z=2$$

 $x-3y+5z=3$ (C.B.S.E. 2000 C) $-x-2y+2z=1$
122. $x+y+z=6$ 123. $x+2y-3z=-4$

$$x + 2y + 3z = 14$$
 $2x + 3y + 2z = 2$ $x + 4y + 7z = 30$ (C.B.S.E. 2001 C) $3x - 3y - 4z = 11$ (C.B.S.E. 2002 C, 2008)

124.
$$5x + 3y + z = 16$$
 125. $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$

$$2x + y + 3z = 19 \qquad \frac{4}{x} - \frac{6}{y} + \frac{5}{z} =$$

$$x + 2y + 4z = 25$$
 (C.B.S.E. 2002 C) $\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$ (C.B.S.E. 2002 C)

126.
$$2x + 6y = 2$$

 $3x - z = -8$
 $2x - y + z = -3$ (C.B.S.E. 2003)

127. Given that
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$, find AB.

Use this to solve the following system of equations:

$$x-y=3$$
 and satisfy mean the mean x and y where x is x and y are y and y and y are y and y and y are y are y and y

Using matrices, solve each of the following system of equations (128-131):

128.
$$2x-3y+z=-1$$

 $x-2y+3z=6$
 $-3y+2z=0$ (C.B.S.E. 2004 C)

$$2x - y + z = -1$$

 $2x + y - 3z = -9$ (C.B.S.E. 2005)

130.
$$x+y-z=1$$

 $x-y-z=1$
 $3x+y-2z=3$ (C.B.S.E. 2005)

131. If
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, find A^{-1} .

Use it to solve the following system of equations:

129. x+y+z=4

$$2x - 3y + 5z = 16$$

$$3x + 2y - 4z = -4$$

$$x + y - 2z = -3$$
(C.B.S.E. 2005 C)

Using matrices, solve the following system of equations (132 – 137):

132.
$$3x - y + z = 5$$

 $2x - 2y + 3z = 7$
 $x + y - z = -1$
133. $3x + 4y + 2z = 8$
 $2y - 3z = 3$
 $x - 2y + 6z = -2$
(C.B.S.E. 2006 C)

$$x+y-z=-1$$
 (C.B.S.E. 2006) $x-2y+6z=-2$ (C.B.S.E. 2006 C)
134. $x+y+z=6$ 135. $x+2y+z=1$ $x+3z=11$ (C.B.S.E. 2007) $2x-3y=1$ (C.B.S.E. 2007)

$$2x + y - z = 1$$
 (C.B.S.E. 2007)
$$2x - 3y = 1$$
 (C.B.S.E. 2007)
$$136. \ x + 3y + 4z = 8$$

$$2x + y + 2z = 5$$

$$-x + 2y - z = -4$$
 (C.B.S.E. 2008)
$$x - y + z = 1$$
 (C.B.S.E. 2008)

138. Using properties of determinants, prove the following:

$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3$$
(C.B.S.E. 2008, 2009)

Using elementary transformations, find the inverse of each of the following matrices (139 – 141):

139.
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$$
(C.B.S.E. 2008)
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
(C.B.S.E. 2008)

141.
$$\begin{bmatrix} 2 & -1 & 4 \\ 4 & 0 & 2 \end{bmatrix}$$
 (C.B.S.E. 2008)

142. If
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, find A^{-1} .

3 -2 7

2x + y - z = 1

Using A⁻¹, solve the system of equations

$$2x-3y+5z = 11 3x+2y-4z = -5 x+y-2z = -3$$

Using matrices solve each of the following system of equations (143-147):

143.
$$x + 2y + z = 7$$

 $x + 3z = 11$
 $2x - 3y = 1$ (C.B.S.E. 2008 C)
145. $2x + y + z = 7$
 $x - y - z = -4$
 $3x + 2y + z = 10$ (C.B.S.E. 2008 C)
147. $3x - 2y + 3z = 8$
144. $2x + 3y + 3z = 5$
 $x - 2y + z = -4$
 $3x - y - 2z = 3$
146. $x + y + z = 6$
 $x + 2z = 7$
 $3x + y + z = 12$

4x-3y+2z=4148. Obtain the inverse of the following matrix using elementary operations:

$$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

(C.B.S.E. 2008 C, 2009)

(C.B.S.E. 2008 C)

(C.B.S.E. 2009)

(C.B.S.E. 2009)

(C.B.S.E. 2009)