MATHEMATICAL TOOLS

Mathematics is the language of physics. It becomes easier to describe, understand
and apply the physical principles, if one has a good knowiedge of mathematics.

wlools are required to do
physical work easily and
mathematical tools are
required to solve numerical
problems easily.

Differentiation Integration Veclors
To solve the problems of physics Newton made significant contributions to
Mathematics by inventing differentiation and integration.

-

Cutting a tree with a blade Cutting a string with an axe
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1.  FUNCTION
Functicn is a rule of relationship between two varlables in which one is assumed fo be dependent and
the other Independent vadable, for example .
8.g. The temperatures at which waler boils depends on the alevation above sea level (Ihe boiling point
drops a8 vou ascend). Here elevation above sea level is the independeni & lemperature is the
dependent vanabla
0.g. The inferes! paid on a cash investment depends on the length of me tha investment is held. Here
time is the independent and interest is the dependent vanable,
In @ach af the above example, value of one variable quantity (dependent variable) , which we might cail
y, depends an the valve of another variable quantity (independent vanable), which we might call x.
Since the value of y is compietely determined by the value of x, we say that y is a function of x and
represent it mathematically as y = f{x).
Here f represents the function. x the Imp-an:ignl variable &y is the dependent varlable,

¥ = o fix)
| s [— . Cupart
{Domain]) Range)

All poesible values of independent varables (x) are called domaln of funclion,

All possible vaives of dependent variable (y) are calied range of function,

Think of & functon f as a kind of machine that praduces an outpul value f{x) in its range whenever we
feed it an inpul value x from its domain (figure).

When we study circles, we usualy call the area A and the radius r. Since area depends on radius, we
say that A is a funclion of r, & = {{r) . The eguation A = =f is @ rule that tells how to calculate a unique
(zingle) output value of A for each possible input value af the radies r.

A=firy= ar . (Here the rule of relafionship which describes the function may be described as square &
mulliply by ).

M r=1 A=gx : il rm2Amdg ; il r=3 A=8n

The sel of all possible input values for the radius is called the domain of the function. The set of all

output walues of the area is the range of the function.
We usually denote funcions in one of the bao ways ©

1. By giwving a formwia such as y = x* that uses a dependent variabie y to denole the value of the

Tunction
2. By giing a formula such as fix) = x* that defines a function symbal f to name the function.

Striclly speaking, we should call the funclion T and nol f{x),
y = 5in x. Here the function is sing, x is the independent variable.

———— Solued Evamples
Example 1.  The volume V of a ball (soid sphere) of radius r is given by the funclion Vir) = (4/3)=l)’ . The

volume of a ball of radius 3mis 7
Solution : Vi3 =4/3n(3)* = 3Bam?.

Example . Suppose that the funclion F is defined for 2l real numbers r by the formula Fir) = 2{r - 1) + 3.
Evaluate F al the inpul values 0, 2, x + 2, and F[2).

Solution : In each case we subsbiute the given inpul value for rinto the formula fer F -
FO)=2{0-1)+3=—2+3=1
Fl2)=2{(2=1)+3=2+3=25
Flx+2)m 2{x+2 - 1)+ 3= 2+ 5 |
FlF{2))=F{B) = 2{(5= 1)+ 3= 11,
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Examplel.

A function f(x) Is defined a8 f{x) = ¥* + 3, Find ;in;}. J11). F65), flest)and SLIT).

Solution : jI:I:I}Iﬂ"+ 3=1 . (1) = '+3=4 N ( a [r.? +3=x"+3
fixrty= e+ 1+ 3= e 24 4 LU = ftd) = 473 = 19

Example 4.  f function F is defined for all real numbers x by the formula F(x) = ¥°. Evaluate F &t the input
values 0, 2, x+ 2 and F{2)

Solution : Fi)=0 ; Fi2)=2t=4 ; Fix+2) = (x42)"
F{F(2)) = Fi4) = 4" =16

(]

2. TRIGONOMETRY

21

Example 5.

Solution :

Example &,
Solution :

Example 7.

Saolution :

MEASUREMENT OF ANGLE AND RELATIONSHIP BETWEEN DEGREES
AND RADIAN

In navigasion and astronomy, angles are measured in degrees, but in calculus it is best to use
units called radians because of the way they simplily laler calculations
Lel ACB be a central angle In a cirele of radius r, as in figure.

B

b
<\

Then the angle ACE or 6 is defined in radius as B = ——"‘";:"9"1 o 0=t
LN RS r
fr=1then 0= AB

The radian measure for a crde of unit radius of angle ACB iz defined 1o be the length of the
circular arc AB. Since the drcumference of the circle is 2x and one complete revolution of a
circle is 360°, the relallon between radians and degrees is given by : = radians = 180°

Angle Conversion formulas
o L
1 degree - m{ 0.02) radian

Degrees o radians © mustiply by %

. T
1 radian T §7 degrees Radians lo degrees : mulllply by %

Solved Examples -

(i) Convert 457 ta radians. (i) Converl ;- rad lo degrees.

45« W rad i 1 " ﬂ =
() 80 4 (i) 6
Coméer 307 io radians,
n =
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Standard values

(1y 30 = %ra.d (2) 48° = -:—rad (3) 60° = rad
() 90" = Zrad (5} 120° = %* rad (6) 135" = rad
(@) 150° = % rad (8) 180" = 1 rad (8] 360° = 27 rad

{Check these values yoursell to see that they satisfy the conversion formulae)

2.2. MEASUREMENT OF POSITIVE AND NEGATIVE ANGLES
y F ?l'l

i
Paositiva ~ Negatve
mieasine Megsure
* ¥

An angle in the xy-plane is said {o be in standard position if its vertex lies al the orgin and its
initial ray Fes algng the positve x-axis (Fig.). Angles measwed counterclockwise from the
posifive x-axis are assigned posilive measures | angles measured clockwise are assigned

nagalive measures,
y 3 ¥

A AN o TSE
Nw, O™ 4 P

2.3 SIXBASIC TRIGONOMETRIC FUNCTIONS
The trigomometric function of a genaral angle & are defined interms of X, y, and r.

¥

«ﬁy (=.y}
T b &

o x |ES
[&] T

Sine : slnﬂ-ﬂ-i Gmnt:cm&cﬂ--ﬂ-L
n r opp Y

Ens'na:nus!}=ﬂ=£ &cﬂ:mﬁ=m=1
mwp T adf

X

. = opp _ ¥ ; _ o _
Tangend ; fanfi = — = = Cotangent ; colfl = —= —
ad| x opp ¥
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VALUES OF TRIGONOMETRIC FUNCTIONS

If the circle in (Fig. above) has radius r= 1, the equalions defining sind and cosd become
cosl = x, sinfl =y
We can fhen calculale the values of the casing and sine diredly fram the coordinates of P.

Solved Evamples

Example 8. Find the six trigonomelric rafos from given figure

4
q
E|

oop _ 4 ad| 3 pp _ 4 _hyp_5
: = — = — : cosfm — = —: f@ni = = —; gosecB=——= —;
Solution y hyp & hyp 5 3 opp 4

hyp _ S ad] _ 3

= =" &g — = —

secl = il 0 4

Example 0. Find the sine and cosine of angle @ shown in the unil circle if coordinate of pant p are as

ahown,
(4£ 4
2
B

/

Solution : cusﬂ=x-:uurdinaiedl’=-%: sin 0 = y-coordinate of P =

¥
3,

24 RULES FOR FINDING TRIGONOMETRIC RATIO OF ANGLES GREATER THAN 50°
Step 1 — Identify the quadrant inwhich angle lies
Step 2 =
{a) If angle = (nx £ @) where n (s an integer, Then Irgonomelric funchon of (e £ B) = same
trigonametic funclion of @ and sign will be dedded by CAST Rue.

¥
THE CAST RULE il Cruadram | Chussrani
8 A
. -
A umekl rule Bt rermembering when th FRERTH
|~ ] |I'w'lﬂ'l'ﬂ'|.l'i3 fufciang are posilive

s magative is e CAST ke, h
F you sew ral very enthusiasic nood GAST, T =

Yau can remenber il g3 ASTC lan posine ) CoS posiees
LA Boha] o cofage)

Il Guadrard | [V Quadrant
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(b) Ifange = {211-&1}%10] whare n is an inleger. Then tegonometic function af [:2n+1]%in]

= complimentary trignometric function of & and signwill be decided by CAST Rule.

| Degree (0] 30 a7 45 53 60 |80 | 120 | 135 |180
Fadians |0 | x/6 | 37eM180 | n/d |S53n/1B0 | nf3 |nf2 | Zxi3 | Anid n
sing |0 w2 | 3i5 |14z| 415 |J3rz| 1 |43/2] w42 | 0
eos [1[J312] a5 |wd2| s w2 | o [-uz]-uwd2] -1
tang |0 |1/43 | 3i4 1 413 | v3 | = [-43] =1 | ¢

Values of sin 6, cos & and tan @ for some standard angles.

Solved Examples

Example 10. Evauaie sin 1207

Solutlon : sin 120* = sin (90° + 30°) = cos 30° = %
Allter sin 120° = 5in (1807 = 60°) = sin 60° = g

Example 11. Ewvaluate cos 1357
Solution:  cos 135" = cos (90° + 45%) = — 5in 45° = - :;2.
Example 12. Evaluate cos 210°
Solution : cos 210° = cos (180° + 30°) = — cos30" == %
Example 13. Ewvaluate tan 210°
Solution:  tan 210° = tan (180° + 30°) = tan 30° = :;3.
(1

2.5 GENERAL TRIGONOMETRIC FORMULAS :

1. & = 2 + B} = oo & oo B = gin 6 ain B
r:‘:ﬁ;:r’:lﬂ; E[L:.-ig;-:hnmuﬂ*rmhsnﬂ
oor' o = eosee’d, o A BB
sk Sl 183 (A = TunA anB
3 sin0=2sinficost ; cos20 =cos’0-sin"d =2c0s70-1=1-2sin" 0
pait il = "I+r::;szﬂ : g 1-::;&2!1
4. sine rule for triangles 8. cosine rule for triangles
a [
3]
b

snoa _ Sinfl _ Einy

a b G
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3.

DIFFERENTIATION
FINITE DIFFERENCE

311

3.2

The finile difference between two values of a physical quantity is represented by A notalion.

For examgle ;

Difference in two values of y is wiilten as Ay as givenin the table below.

Y2 104 100 100
¥ &) 99 L R
AY = Yi=1¥1 Bl 1 0.5

INFINITELY SMALL DIFFERENCE :

The Infinitely smadl difference means very-very small difference. And this difference is

represented by 'd’ notation instead of ‘A",
For example infinite'y small difference in the values of y is written as 'dy’
ifys; =100 and y, = 99.99959059........

then dy = 0.000000.................

0001

DEFINITION OF DIFFERENTIATION
Anether name for differenfiation is derivalive. Suppose y is a funclion of x ory = fix).

Differentiation of y wilh respect to x is denoted by symbol {x) where £ (x) = dy

dx

dx is very smafl change in x and dy |5 comesponding very smafl change iny.

MOTATION : There are many ways lo denole the dervative of a funclion y = fix). Besides f'(x),

the mast commaon nolations are these

y “y prime” or 'y dash®  Nice and brief but does not name Ihe
independent variable.
% ‘dy by dx” Mames the variables and uses d for derivativa.
df
e di by dx® Emphasizes the funclion’s name.
d *dbyds of Emphasizes the idea that differentiation is an
prov fix) operation performed an |
0.f dx of A common operator notation.
¥ "y dot” One of Newlon's notations, now comman for
time derivatives i.e. %lt 4
1 (x) fdashx Most commaon notation, It names the
independent variable and Emphasize the
funclion's name,
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3.3

34

3.5

3.6

SLOPE OF A LINE

It is the fan of angle made by a ling with the pasitive direction of x-axis, measured in
anticlockwise dirachon.

Slope = lan 8 {in 1" queadrant tan 8 is +ve & 2nd quadrant tan 0 ig -ve )
In Figure - 1 slope is posifve In Figure - 2 slope is negative
@ = 80" (15t quadrant) f = 80" (2nd quadrant)
}'ﬂ jl ;
& ¥
E L% Mt‘lﬂ e ¥
— »X = »
Figure -1 Figure - 2
AVERAGE RATES OF CHANGE :

hven an arbitrary function y = {x) we calcuiale the
average rate of change ol y with respect to x over the T T P el
interval (x, x + Ax) by dividing the change in value of y,
ie Ay = flx « Ax) = i(x), by length of interval Ax over
which the change ccourred.

The average rale of change of vy with respect 1o x over Ll R
the interval [x, x + Ax]
= A _ fiix + Ax) = f{x)

A Ax

X

R ay
in tiangle QPR tank = =

S

; Ay ;
T A
Geomelrically, . = PR = fan & = Slope of the line PO

therefore we can say that average rate of chenge of y with respect to x is equal o slope of the
line joireng P & Q.

THE DERIVATIVE OF A FUNCTION

We know thatl, average rate of change of y wirl. xis E—I = w ]

the limit of this

ratio exists as Ax =+ [, then il is called the dervalive of given function fix) and is denoted as

F{) = % %0 %ﬂl‘"m

GEOMETRICAL MEANING OF DIFFERENTIATION
The geomelrical meaning of differentiation is very much useful in the analysis of graphs in
physice. To understand the geomelrical meaning of derivatives we should have Knowledge of
secant and tangent to a curve.
Secant and tangent fo a curve
Secant : A secant fo a curve is a siraight line, which infersects the curve al any two points,

!

E

Saand

-
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3.7

Tangent : A tangent is a siraight line, which louches
the curve al a paricuiar point. Tangent is a limding A Larrinas
case of secani which intersects the curve at two
overlapping points.

In the figure-1 shown, if value of Ax is gradually L e
reduced then the point C will move nearer io the point
P. If Ihe process is confinuously repeated (Figure - 2)
value of Ax will be infinitely small and secant PO io the
given curve will become a langen at point P

Therefare _E[M] Y = 13N @

wa can say thal differenfiation of y with respect to x, Le. (3—:] Is equal 1o slope ef the tangemt

al point P (x, y) or lang = j—:[meﬁg. 1, the average rale of change of yfromxlox + Ax s

identical with the slope of secant PQ.)

Ay

Figure - 2
RULES FOR DIFFERENTIATION
RULE NO. 1 : DERIVATIVE OF A CONSTANT

The first rule of diffiereniiation is that the derivative of every constant function s zero.

If cis constant, then %n =10,

Example 14,

d df 1 d
ﬁ““'”dn_ ] n.E{ﬁ]-u

RULE NO. 2 : POWER RULE

If nis a real number, then dif":m“" :
x

To apply the power Rule, we subtract 1 from the ariginal expanent (n) and mu fiply the result by n
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Example 15.

Example 16.

Example 17.

1|h|x’|r‘ ¥ ..
r|1|2:|3x’¢f

oAy e a1
0 5] wh=enets - L

| d 4 ] _'i_ | .| - ~
{if) E[?] 4 = (%) = 4{-3)x

d irs 1 =k 1
ay —(% |- B
(a) “! ) 2 o0x
| |
Function defined forx =0 dervative defined cniyforx >0

LT _1 4
(b} mtl ) "

| |
Function defined for ¥ = 0 darvative not defined stx =0

RULE NO. 3 : THE CONSTANT MULTIPLE RULE

%

I u ks a dilferentiable fundlion of x, and ¢ is a constani, then -u—{r:u} = l::d—u

dx

In parcular, If n is a positive integer, then dil[m“ j=enx™"
x

Example 18,

Example 153,

The dervalive formula %:Ex’F 3(2x) = Bx says that if we rescale the graph of y = x” by
miLftiplying each y—coordinate by 3. then we multply lhe slope at each point by 3.

A uselul special case. The derivative of the negative of a differenfiabie funclion is the negative
of the funictior’s derivalive. Rule 3 with c= =1 gives.

e = 8w Do
EE':""] ux“"} 1thﬂ d;{”}'

RULE NO. 4 : THE SUM RULE

v

The derivative of the sum of two differentiable fundions is the sum of their desivatives,

W uand v are differantiable fundions of x, then their sum u + v |5 differenfiable at every point
iﬂlurﬂ u and v are both differentiable functions is thelr dedvatves,
dv du l:hr
!u V)= —[u +{=1] = -—+{—1JE_E i
The Sum Rufe aiso extends fo sums of more than two functions, as long as there are only
firitely many funcl ons in the sum. If u,, us,......._u, are differentiable at x, then so is

U+t U and :;I{u. U4 tW) = du, +ﬂli-+ '::"
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Example 20.

{a) y=x'+ 12¢ [hly=f'+%f-—5:+i

gy _ 9.9 gy _ 4,904 =]-_"L a
o R AT g ) m‘mix}*d:ka” el

=4 +12 =3:’+%.2:-5+u-af+g:-5_

Molice thal we can differentiate any polynomial term by term, the way we differentated the
polyromials in above example

RULE NQ. §: THE PRODUCT RULE

»

If u and v are differentiable at x, then sois thelr product uy, am% )= u%ri- l.'d—u.

The derivative of the product uv is u times the denvative of v plus v times the derivalive of u.

Im prime notation ()™= uv’ + v’
While the derivative of the sum of beo funcions is the sum of their derivatives, the derivative af
the product of two funclions is not the prodect of their dervalives. For instance,

._q_ Ii ?l E i ] B |
= (xa) = () = 2 while — (x). — ()= 117 1.

Example 21.

Solutlon :

Example 22.

Solution ;

Find the derivatives of y = % x5+ 1) e+ 30
Fram the product Rue with u = x* « 1 and v =x" + 3, we find
::IilfJlti + (" + 3] = (7 + 1) (3F) + 7+ 3) (20

X

=3+ 3" + 2 + B = B+ 3"+ By,

Example can be done as well (perhaps better) by multiphying out ihe onginal expressian for v and
differentialing the resuiting polynomial, We now check : y= (¢ + 1) (" + ="+ 2"+ 2¥ + 3

ﬂ = Ex® & T+ B

dx

This is In agreement with aur first calculation. There are fimes, however, when the product Rute
must be used. Inthe following examples. We have onfy numencal values to work with.

Let v = uv be the product of the funclions u and v. Find y{2) if u(2) = 3, u'(2) = -4, ¥(2) = 1, and
vi2) = 2.

From the Product Rule, in the form y* = (uv)’ = uv’ + v,

we have y'(2) = u(2) vI(2) + w(2) u" (2) = (D) + (1) () =G-4=2

RULE NO. 6 : THE QUOTIENT RULE

2

If u and v are differentiable at x, and v{x) «» 0, then the quaotient ulv |3 differentiable at x,

GOu_ av
and i[!] = _u
dxl v v
Just as the dervative of the product of twe differentiable functions Is not the product of their
derivatives, the dervalive of the quotient of bwo functions is not the quotient of thair dervatives.
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i
Example 23. Find the derivative of y = I—'—-I

241
Solution :  We apply the Quoient Ruewithu=t'=1andv=1+1"
dy _ (' + 2t -2t _ E[E]. viduldt)- u(duidl) 20 +2t-20420 4l
dt (E+1 dilv v (£ +1)° (t* + 1y

RULE NO. 7 : DERIVATIVE OF SINE FUNCTION

ﬁ %qu‘n x) = cosx

Example 24. {a) y=x"—sinx: % & 2:—5;-:9113} Difference Rule
=3 =COS K
{h}y=fslnx::—: =x’u% (sinx) + Zx sinx  Product Rue

=x‘cosx+ Mginx

:-i {sinx)-sinx

Sinx dy dx
o) yEI—— L Cuotient Rule
ey x dx ¥

_ XCOSX = SN
X :
RULE NO. 8 : DERIVATIVE OF COSINE FUNCTION

' d .
ﬁ' d—ﬁ{msu}:—smx

Example 25. (8] y=Sx+cosx

dy _ d d
Fika E{Eﬁ} +E {oosx) Sum Rule
=hH-—sinx

(b} v = sinx cosx
9 - gine 2 (cose)+ cosefsine 2 Product Rule
dx dx dx

= sinx (- imx) + cosx (cosx) = cos’ x - sin®x

RULE NO. 9 : DERIVATIVES OF OTHER TRIGONOMETRIC FUNCTIONS
Betauss sin x and cos x are differentiable functions of x , the related fundions

sin x 1
lanx = " SeCX =

o5 X o0s X
cotx = 2= X 4 COSEE X = _1

gin x Ein ¥

are differentiable at every value of x al which they are defined, There derivalives. Calculated
from the Quotient Rule, are given by the fallowing formnulas.

ﬁ = (lanx) = sectx | 2 (secx) = secx tanx
dx dix

E.

3

x {nl:utx]n=—maec::r; %E:nﬂau:ﬁ—msac:mtu
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Example 26.  Find dy/ dx if y = tanx

[ . d
CO08 X ~—{3inx) = §in x — (cos x)
Solution : L. {tanx) = i(sh :]= dx e
dx dx | cosx o8’ X
_tosxcosx—sinx(-siny) cosfx+sinix _ 1 ——
cos’ x cos’ X cos” X

Example 27. (a) :Lx (¢ + cotx) = 34 i {cotx) = 3— cosae®

(B} E(ﬁ] = (2eosec x) = 2—1mr.em:| = 2 (-cosec x colx) = -2 cosecx col x

RULE NO. 10 : DERIVATIVE OF LOGARITHM AND EXPONENTIAL FUNCTIONS

ﬁ' %{Ing.x}:% = %{a']-g

Example 28. ‘,r =g . |0g.(x)

. i — d_'.r:: o E_
dx mt‘-’- } log ix} -drilﬂﬂ.tm}]e" o &, log, (x) + >

RULE NO. 11 : CHAIN RULE OR "OUTSIDE INSIDE" RULE

dy _dy du
dx du dx
It somefmes heips to think about the Chain Rule the following way. I y = figix)),

-dlﬂ
- = latalg(x)

Inwards : To find dy/dx , differentiate the “outside” function f and Ieave the "inside” g{x) alone ;
then multiply by the dervalive of the inside.

We now know how to differentiate sin x and x° - 4, bul how do we differentiale a composite ike
sin (x* — 4)7 The answer is, with the Chain Rule, which says (hat the derivative of the
composile of two differentiable funclions is the product of their dervakves evalualed al
appropriate points. The Chain Rule is probably the most widely used differentiation rule in
mathemalics. This seclion describes the nite and how fo use |t We begin with examples.

— Solued Snamples

Example 29. The function y = &x = 10 = 2{3x - 5) Is the compasite of the funclions y = 2u and u= 3% - 5.
How are the derivatives of these three functions reftated 7

Solution : mw"—hﬁ.“—hz i _ 5
idx dx
dy _ dy d_u
Since 6= 23, Al
Isltanac:n:IEMIhald"r'ﬂ.d—-"!?
dx du dx

i we think of the derivative as a rate of change, our infuition afows us 10 see that thes
relationship is reasonable. For y = f{u) and u = g(x) , if y changes twice as fast as v and u
changes three tmes as fast as x, then we expecl y lo change six limes as fast as x
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Example 30.

Solution :

Example 31.

Ve sometimes have o use the Chain Rule bwo or more times to find a dedvative. Here is an
example. Find the dervative of gif} = tan (5 — sin 21)

d = i ]
gl - {tan(5- sin 21)

= gec’ (5- sin 2t) . E";; (5 - sin 21)
Derivative of

fan u with

u=5-=sin

Derivative of

E—sinuw

with u = 2t

= sa¢® (5 - 5in 21) . (0 - {cos 21) | % (21}

=sec’ (5-sn2t) . (—cos2t) .2
= _2{eos 20 sae’ [ 5 —=in 20)

@ 9 q_ oyl oy am u=1—x'andn=1/4
“(1 x') 4{1 )™ (—2x)

Function defined
onf-1,1)
=]

=2{1_11]:H-l
darivalive defingd
oy e {-1 9}
d = E = =
I:h]la sin 2x ma.'b:d! (2x)=cos2x . 2=2 cos 2
(© = (Asn (ot +4)
'Ar:.m{mH#!l:—Itwt-lﬂ-ﬁmsfmhﬂ.m.-Amm{mt-'-i}

RULE NO. 12 : POWER CHAIN RULE

®

If u(x) is a differentiable funcion and where n is a Real number , then u” is differentiable and

B du
Eu‘ nu""dldh'nEFl

Example 32.

d

G

sin'x=5sin'x :—H:mx:ﬁ:Esln'xnnsx
(b di (2x+ 1)V =—32x + 1) di (2x+1)=—32x + 1) (2) = -6 (2= + 1)
X X

d 1 -.i = e - -4 = i:- - 2 - 3
t::'.nEI-( ]—dxcax 2 A= 2 -2 =1 (k-2 =

=2
In part {c) we could also have found the dervative with the Quotient Rule,
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Example 33.

Solution ;

Find the value of r.‘l;:: (Ao + B)"

Hereus Ax + B, = 34 4
dx

. d = 1
._Ei.ﬁ.:-rﬂj" niAx + B)™ A

RULE ND. 13 : RADIAN V5. DEGREES

%

%ﬁ":“u} ¥ %ﬁ" (::n] " 78 m[f:n]: 785 °°20-

3.8

Example 34.

Solution :

Solved Evamples

DOUBLE DIFFERENTIATION
If fis differentiable funclion, then its dervative [ is also a funclion, so £* may have a derivative
of its own, denoted by (f" ) = 7", This new funclon f“ is called the second derivative of 1
because il i the derivatve of the derivatve of f Using Leibniz nolation, we wrile the secand
derivative of y = {{x} as

d(dy)|_dy
dx| dx)  dx?

INTERPRETATION OF DOUBLE DERIVATIVE

We can interpret f(x) az the slopa of the curve y = f'{x) at the poant (x, f'{x)). In other words, it is

the rate of change of the siope of the origina! curve y = f{x)

In general, we can interpret a secend derivative as a rate of change of a rate of change. The

mast familiar example of this is acceleration, which we define as follows.

If 5 = &(f) is the position function of an object that maves in a straight line, we known that its first
ds

derivative represents the velocity w(t) of the object as a function of time : w(l) = &' () = e

The instantaneous rate of change of velocily with respect to time is called the acceleration ait)
of the object. Thus, the acceleration function is the dervakve of the velodty funclion and is
therefore the second denvative of the position function : a{l) = w'{1) = s*(1) or in Leibniz notation,

. Another notation |8 f(x) = Dy i{x) = D%(x)

T ix)=xcos % find {"(x),

Uising the Product Rufe, we have I'jx) = n:—:{cﬂs x)+ mudi {x)
X

=_xENnX+cosx

Tafind £ {x) we differentiate f* (x) :f"{x;l-d% (=% sinx + cos x)

l-x:—lmn:]ﬁsinx Ei-{-xH:—“{cm ¥)=—Xcosx-sinX-snNx=-xcosx—-2sinx
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Example 35.  The position of a particie s given by the equation s = f(f) = I — & + 0 where 1 is measured in
seconds and s in meters. Find the accelerstion at ime §. What is the acceleration afler 45 7
Solution:  The velocily function is the derivative of the position funclion - s = f{t) = t* = 62 + &1
e
= W)= & AT =124+9
The acceleration is the dervalive of the velocity fundion - a {l) = [:l? " I = G- 12
= al4)=6(4)-12=12 ms
L
3.9 APPLICATION OF DERIVATIVES
3.9.1 DIFFERENTIATION AS A RATE OF CHANGE

— Solved Examples

Example 36.

Solution ¢

-3—:is rate of change of ‘y" with respect to %" :

For examples ;

i) v= & this means velodty %' is rale of change of displacement 'x' with respect 1o tma 1’
dt i

i) a= :—:r nis means acceleralion "a’ is rate of change of valacily v with respect to fme 1 .

{ily F= % this means force °F is rate of change of momentum ' with respect to time ' .

{iv)t = ':.—L this means lorque 't is rate of change of anguiar momentum ‘L' wilh respect to
Lime '

{v) Power= T—llrﬁs means power ‘P s rate of change of work VW with respect to time 't

i) = "':' this means current ‘T is rate of Bow of charge ‘g’ with respect o time

The area A of a cirdle is relaled 1o ils diameter by the equation A = %n‘_ How fast is the area

changing with respect to the diameter when the diameler is 10m 7

The (instantaneous) rate of change of the area with respect to the diameter is it E;rn-“n

a0 4 2
When D = 10 m, the area is changing at rate (w/2} 10 = 5z m'im. This means that a small

change AD m in the diameler would result in @ change of about 5zADm?® in the area of the
cirde
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Example 37. Expermental and Ihecrefical invectigatons revealed thatl the distance a body released from
rest falls in lime t s proportional 1o the square of the amount of tme it has fallen. We express

this by saying tha
| (seconds) 5 (meters)
t=0 @ D
i 5
— 10
=15
t=2 3 20
=25
=30
— 35
— A0
t=3 {3 —45
w
A ball bearing falling from rest
L
s= gl

where s is distance and g is the acceleration due to Earth's gravity. This equation holds in a
vacuum, where (here is no air resistance, but it closely models the fall of dense, heavy objeds

in air. Figure shows tha free fall of 8 heavy ball bearing released from rest at ime L = 0 sec.
(@) How many melers does the ball fadl in the first 2 sec?

(B Vhat is ils velocity, speed, and acceleration then?
Solution : {a) The free-fall equation is s=4.9 ¢ During the firs! 2 sec. tha ball falls s(2) = 4.9(2f = 196 m,

(b) At any time I, velocity is derivative of dispiacement : vil) = s'(t) = % (49 = 981
Al t= 2, the velodly is v(2) = 18.6 m/sec in the downward (increasing s) direction. The

T
speed ptl=2 05 speed = w2} = 196 mfsec. a= -:-i-f—l 9.8 mys®

3.9.2 MAXIMA AND MINIMA
Suppose a quanlity y depends on another quantity x in @ manner shown in the figure, it
becomes maximuom al x; and minimum at xa, Al these points the tangent to the curve is parallel

to the x-a05 and hence its slope istan = 0. Thus, at 8 maximuem or a ménimum, sope = %ﬂl-

I,

Xy &y

MAXIMA
Just before the maximum the slepe |8 positive, al the madmum it is zero and just alter the

madmurn it is negalive. Thus, '—;% decreases at a maximum and hence the rate of change of

2 i negative at a max LA s i
= is nega 3 rmaximum e % g < (0 gl maximum,
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My >m, =0>m,m,

(&} For maxima, as X increases maihpa;x

dECraases

The gquantity % [:‘%" |s the rate of change of the slope. It is written asi{ :

Conditions for maxima are: (a) = = (b) :Tf-r- 0

dx
MINIMA
Similarly, at 8 minimum the slope changes from negative o positive. Hence with the increases
af x. the slope is increasing that means the rate of change of slope with respect to X is positive

hence % [g—] =0
aY

slope = m, = tand
, M =my=m,=0=<m <m,

B,

0.=0

#
——————— :I---.:‘.....-

R
d For minima, as x increases slope
nCreases,

a ﬂ = ﬁ =
Conditions for minima are : (a) I 0 (b} o 0

Cuite ofien it is known from the physical siluation whether the quantity is 8 maximum or &
d'y

¥
L

— Solved Evamples

Example 38. Partice’s position as 8 function of ime is given as x = 5t° - 91 + 3. Find out the maxmum value
of position co-ordinate? Also, piot the graph.
Solution : x=5" -0t+3

minimum. The test on may then be omitied.

E-J'£=1EII—E"-I:I s temoHd= 08
dt
Check, whelher maxima of ménima esdsts. % =100

oo thede gusts aminma att=09
Maow, Chack for the limiting values,
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When t=0 T x=3

= | KeEm
So, the maximum posifion co-ordnale dees nal exist,
Graph :
t
E
{03
09
| .l'-f-'nl—‘M r—=

Putting t = 0.9in the equation x = Elﬂ.ﬂf— Q09+ 3==1.05
NOTE : Iif the coefficent of * is positive, the curve will open upside.

SOLVED EXAMPLES ON APPLICATION OF DERIVATIVE

Example 38. Does the curve y = x" = 2x* + 2 have any horzontal tangents 7 If so, where 7
Saolutian @ Tha herizontal tangents, if any, occur where the siope dy/dx is 2ero. To find these points. We

d_rli it 24 = — iy
1. Calculale dyldx % dx{:‘ 2% + 2= Ay’

2. Sghve the equation : :—r'r =0forx:-4x =de=0
o
Anp’ -1)=0 ;_ x=0,1,-1
The curve y = x" — 2¢" + 2 has horizontal tangents at x = 0, 1 and -1, The correspending points
on the curve are (0, 2} (1, 1) and t-1.¥1]. Eee figwe

:H"—'I‘-h:"'z

0.2}

1
=1.1) (1.1}

i } 3
-1 0 1
Example 40. A hot air balloon rising straight up from & |evel field is tracked by a range finder 500 fi from the
fift-cff point. At the moment the range linder's elevalion angle is o4, the angle is increasing at
the rate of 0,14 rad/min. How fast iz the balloon rising al the moment 7
Solution : We answer the queslion in six sleps.

E =0.14 rad [ rrin

di
when il = —
d |’| E =1
dt
wi'uannll-l
Rangefinder C 4
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Fstep1:

™ step 2:
F" step 3:
& stepa:
'-‘.E'sups:

II:3'-5-1:«":-5:

Exampile 41.

Solution :

& Step 1

Draw a picture and name the varables and constants (Figure). The variables in [he picture ane
@ = the ang'e the range finder makes with the ground (radians).

¥ = the height of the balloon (feet).

We let | represent bme and assume 0 and y to be differentiable functions of L

The one constant in the picture is the distance from the range finder to the lif-off paint (300 fL)
There is no need to give It a special symbol 5.

Write down the additional numerical information, % =014 radminwhan 0= n/ 4.

Write down what we are asked (o find. We want dy/dt when 8 = =4,

Wirile an equation thal relales the variables yand 0. = fan 0, ﬁ or y=5001an8,
Differentiate with respact 1o t using the Chain Rule. The result 12/s how dy/dt (which we want)
is related 1o dEfdt (which wae Enow).

o o
500 sec” @ —
ar Ul R

Evaluate with 8 = =/4 and divdt = 0,14 to find dyfdl,
i_f= mn{ﬁ]’ (0.14) = (1000) {0.14) = 140 tsnn%= ¥Z)
Al the momen! in question, the balloon is rising at the rate of 140 ft./min.

A police cruiser, approaching a right-angled inlerseclion from the norlh, is chasing a speeding
car Ihal has tumed the comer and is now moving siraight east. When the Cruiser is 0.6 mi
norh of the intersection and the car is 0.8 mi to the easl, the police determine with radar that
the distance between them and the car is increasing at 20 mph. If the cruiser is moving at 80
myph at the instant of measurement, what is the speed of the car?

We carmy ouf the steps of the basic siralegy.

¥

Picture and vanables. We piciure Ihe car and crulser in the coordinate plane, using the positive
x¥-axis as the eastbound higiway and the pesitive y-axis as the northbound highway (Figure).
We el | represent Bme and sel x = position of car at lime 1

y = posibion of craser attime t, 5 = gistance between car and cruiser al ime L

We assume x, y and s lo be dfferentiable functons of 1.

x= 0.6 mi, -,r-nami.:—'{--ﬁnmm %liﬂmw
{dyidi is negative because y is decreasing.)
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d:

F™ Step2: Tofind : =
B Step3: Howihe variabies are related : ¥ = x* + y*  Pythagorean theorem
{The equation s = /x* + yv* would also work )
@& Stepd: Differentiote with respect to 1, zsz—f-hi ':’1—:' Chain Rule
o1 (g @)t (x,B
atoslat ) Jesy i
(F™step5: Evaluate, withx = 0.8, y = 0.6, dyidi= - 50, dafdl = 20, and scive for dwidt,
1 i ] dx  20+36
Dﬂ—+ 0By —80 - e = -
J{nmh{um""» {0.8)—E0) | = 20 uad 36 = 5 o3 70
| S—
1
Al the moment in question, (he car's speedis 70 mph.
0
4, INTEGRATION

In mathemalics, for each mathematical operation, there has been definad aninverse operation,

Far example - Inverse operation of addiien is sublructon, inverse operalion of multiplication is division
and inverse operation of square is square rool. Similarly there s a inverse operation for differensation
which iz known as integration

4.1

ANTIDERIVATIVES OR INDEFINITE INTEGRALS
Dafinitions

A function Fix) is an anfiderivative of a function Kx) i F'{x) = f(x) for &1 x in the domain of .
The =21 of a8l anbderivalives of 1 is Lthe indefinite integral of 1 with respect o x, dencled by

The function is the integrand.
% is the variable of mtegration
e j f(x)dx
e Tl
Integral of 1

The symbg! J' is an infegral sign, The functign Fis the integrand of the integral and x is the
varable of imflegralion,

For example fix) = x_ then f{x) = 3’

S the integral of 3’ is x*

Similarly if fix) = x" + 4 then Tix) = 3x°

So the integral of 1xis x" + 4

there for general integral of 3¢ is x” + c where ¢ is a constant

Cne antidenv ative F of a funclion 1, the olher antiderivatives of T differ from F by & constant. We
indicate this in integral netat on in the foll owdng way |

jf(x}dx =Fx)+c. L (i

The cansfani C is the constant of integration or arbitrary constant, Equation (1) is read, "The
indefinile integral of fwith respect ba x is Fx) + C.” When we find F{x)+ C, we say that we have
integraled f and evaluated the inlegral.
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———— Solved Examples

Example 42. Evaluale I 2% .

Solution :

]21&:::7{:}

an antiderivalive of 2%

the arbitrary constan

The formula x° + C generales all the antiderivatives of the function 2x. The function et u'on,

andx*+ 42 are all anfidervatives of the function 2x, as you can check by differenfiation. Mamy of
the indefinie integrals needed in scientific work are found by reversing dervative fommulas,

4.2

——— Solved Examples

INTEGRAL FORMULAS

Indefinite Integral

1

8

IH"
Ir“d‘x:—1+ﬂ ,n=—1, n rational

n+

Idx- [‘h:ht = x4+ C (special casa)

—cos(Ax+B) +

c
A

[sin{ Ao + Bdx =

sim ha-rﬂ,_.r

jt:DEh:l:'I:
Igec*:n:lx =tanx+C

Icma:‘:dx-.-—m'lnl::
[secxtanxdx = secx+C

Jcmecxmmx:-msmx+ﬂ

1
et s

Reversed derivative formula
[y o
el —— =
dx|n+1

%[:!'1

i[_ﬂﬂﬁ b
dx

d [ sinkx
dxl Kk

]- gim ke

]=m5lur

ilﬂl'lﬂ'i' EEEEI
s

%{—mt:]=mc’:

d
— SBC X = SBC X tan X
dx

% {-cosec x) = cosac ¥ oot X

Example 43, Examples based on above formulas ;

{a) [xdx =%ﬁ+c

1

—de = | x "y =M L C=2Jx +C
{h}J-ul'; lx 3 0+ X+
{g) [sin2edx =

(d) jm%m = [cos

- Cis 20 oG

2 112

LI LU e 25}”%4..:

Formmula 1 withn=5

Formula 1 with n=-1/2

Fommula 2 with k= 2

Farmula 3 with k= 1/2
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Example 4d. Right : [ xcosxde=xsinx+cosx+C
Reason: The dervative of the right-hand side is the integrand.
Check % (xsmMx+Ccosx+C)=XCOSX+SNX-8SnX+0=xCos5x.

Wrong @ xcosxde=xsinx+C
Reason: [ The derivative of the right-hand side is not the inlegrand:
d

Check |
dx

ksnx+ Cl=xcosx+sinx+0 xcoosx

4.3 RULES FOR INTEGRATION
RULE NO. 1 : CONSTANT MULTIPLE RULE

ﬁ A funclion |5 an anl/derivalive of a constant mutiple i of a functien Tif and only if it is k times

an antiderivative of {
[Wf{x)edx = k [F(x)che ; where kis a censtant

Example 45.  Rewriling the constant of integration [ Ssecxtanxdx=5 | secxtanxdx

Rule 1
=hisecx+C) Formmula &
=hsecx + 5C First form
=bsecx+C’ Shorter form, where C' is 5C
=hsecx+C Usual ferm-no prime, Since 5§ tmes an

arbifrary constant is an arbiirary conslant, we rename C'.
What ahout &l the difierent forms In example? Each one gives & the anfidedvatives of f(x)= &
SEC X lan x. s0 each answer is comect. But the least complicated of the three, and the usual
choice, Is

_[ Geecxtlanxdx=5g5ecx+C
Just as the Sum and Difference Rule for differentation enables us to differentiate expressions
term by term, the Sum and Difference Rule for integration enables us to inlegrate expressions

term by term. When we do so, we combine Ihe individual constants of infegration nto a single
arbifrary constant at the end.

RULE NO. 2 : SUM AND DIFFERENCE RULE

ﬁ' A function s an anliderivative of a sum or difference | £g i and only if it is the sum or

difference of an antiderivative of f an anfiderivative f g.
[ () + pix)lex = [ fixjedae £ [ glxpete
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——— Sotued Examples

Example 4E,
Solution :

Example 47,

Example 48.

Tem-by-term integration. Evaluate : [ (x* - 2x + §) dx.
If we recognize thal (x* 13) — x* + 8x is an anfidervative of x* = 2x + 5, we can evaluate the
integral as

aniiderivaiive
arbirary consian

u’-a+5m=-§ -+ B+ C

If we do not recognize the antiderivalive right away, we can generale il term by lerm with the
sum and difference Rule:

Jix* - 20 + B)dx = [~ [2xdx+ [Sdx = .."i;..q. Cy—¥+Cp+ Bx+Cy

This formula is more complicated than it needs to be. If we combine C,,C; and C; Info a single

constant C = G, + C; + G, Ihe formwla simplifes lo
J'IJ: 7
—_— = Rt
E: |

and sl gves #l the antiderivatives there are. For this reason we recommend that you go right
ia the fingl form even if vou elect o infegrate term by term. Wiile

a
T _Bn4E “dx— [2xdx + [5de = 2 —xfasxec,
[ +B)dx = [a'ddx— [2udx + [ s + 5% +
Find the simples! antidenvative you can for each part add the constant at the end.

We can somelimes use {rigonometne identities 1o transform integrals we do nol know how to
evaluate into integrals we do know how to evaluate. The irtegral farmulas for sin® x and cos® x
arise frequently in applicaions.

{a) f:m* xtlx = _[-—1"::52“ dx sin®x= —1_'“:52!

q 1 1
= E“I - cos 2x)dx =.E.jdx 5 _[r.m:ind:

x® 1) sin2x ¥ s5in2x
o | it i I S D E
"3 [2] g g g
1+ cos2x 1+cos 2%

{t) jcus’::-u:uj—z—d: cos® ¥ =

8IN2% |~ Asin part (a), bul with a sign change

=1|—
i

Find a body velodity from its aceceleration and inillal velocity. The acceleration of gravity near
the surface of the earth is 9.8 misec”. This means that the velocty v of a body falling freely in a

vacuum changes al the rate of %‘g 0.8 misec’, If the body is dropped from rest, what wil fts

velocity be 1 seconds after il is released?

Lecened with Cemdconrer



Solution :

In mathemalical terms, we wani o salve the iniial value problem thal consists of
The differential conditian :—:- 9.8

The initial condifion : v = 0 when t = 0 ( abbreviated as v (0) = 0)
We first solve the differential equation by integrating bolh sides with respeci fo &

% =08 The differential equation

_[‘;t—"m = [98dt  Inlegrale with respect fo |

¥+ Cy=981+C; Inlegrals evalusted

v=08+0C. Constants combined as one
Thiz |ast equation telis us that the body's velocily | seconds inlo the fall is 588 + C misec.
Forvalue of C: Whal value? We find oul from the initial condifion :

ve QB+ C

0=98(0)+C vilh=0

C=0.
Conclusion ; The body’s velodty | seconds into the fall is

v = 0.8+ 0= 9.8 mizac.
The Indefinite integra! Fix) + C of the function f{x) gives the general solution y = Fix) + C of the
differenial equation dyidx = f{x). The general solution gives ab the solutions of the equalion
(there are infinitely many, one for each valve of C). We solve the differenfial equation by finding
its general Solution | We then soive the initial value problem by finding the particular solution
that satisfies the initi al condition y{x:) = v. ( ¥ has the value yowhen x = x. ).

RULE NOQ. 3 : RULE OF SUBSTITUTION

ﬁ‘ Jltg{:}j - gix)dx = jf[uj:tu 1. Substitute u = g{x), du = g'{x) dx.

=Fuy+C 2. Evalusie by finding an antiderivatve F {u) of
f{u). (amy one will do,)
=F (gl + C 3. Replaca u by gix).

Example 43,

Solved Examples

Evaluate jf,x+2:’m:.

W can put the integral in the form [udu
by substiluting u=x+2 du=d{x+2)= % {x+2). dx = 1.du = dx.

Then [(x+2)°dx= [u'duu=x+2, du=dx

= "'E +C Integrate, using nue no. 3 with n= 5.

=E;EEE+C~ Replace u by x + 2.
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Example 50.

Example 51.

Example 532.

Example 53.

Evauate |14y 2y dy= [u"du. Letu=1+ " du =2y dy

[rdf a4
% {:I,E} 1 Infegrate, using nde no. 3 with n= 1/2.
#*
F — %LPFI“_ E $||1'|p|w I_m

= %{1.;_-;*';” +C Replaceuby1+y".

Evaluate Jms {70+ 5 db = l-:nsu-%du Let u= 76+ 5, du = 7d8, (1/7) du = di.
= Zfcosudu  Wilh (1/7) out front, the integral is now n standard farm,
= %5Inu+t Integraie with respect o W
. %sln (70 + 5 + C Replace u by 70 + &.
Evauate [x sin(x)'dx = [sin(x)® «x* dx
=jai1u-%du Let u = x, du=3x" cbe, (1/3) du = x"dx.
= %Jsinudu
= % (=cosu)+ C Integrate with rezpect o u
=—%m5{:’] +C Replacau h]rx".
1 2

J‘mm -ISEE 20 disec 20 = p—
= [secius %du Let u= 20, du=24d0, dd = {1/2)du,
s 1

2 jue:: udu
= %lanu+c: Inlegrate, using eq. (4).
= %Ian 20+ 0C Replace u by Z6.

.41 = 1.9 - 1. a
Check: m{gmnﬂmﬂ] TR (tan 20) + O > (mc’zﬂ :IDED] Chaln Rule
1

1
WERTIE 5 ST P
2 ¢ o 20
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Example 54, jsin“ tcosidi = Iu"du Let u = sin i, du = cos | di

L]

="'F +C Integrate with respect io u,

E
= 5Ig Ly c Replace u.

The success of the substiluion method depends on finding a subsbilulion thal will change an
integral we cannol evaluate directly info one that we can, If the firs{ substitulion fails, we can fry
o simplify the integrand further with an additiona| substilution or bawo,

4.3 DEFINITEINTEGRATION OR INTEGRATION WITH LIMITS
The function Is the Infegrand.

G i i
Upper limit mteumhnn'x,_,‘__ x is the varable of ntegration

Imagralsign..:j t% (H}d}{ -
a

Lower limit of integration-""———»w—
Imtegral ol f from aio b

i'{x}ﬂ: =[gx)]’ = gib) - 5(a)

where gix) is the anlidarmeatve of 1(x) 1e. g'{x) = fix)

Solved Exanpiled

Example 55. | " 3dx = 3]::1::3[::1: =34 (~1)] = (3) (5} = 15

j;lislnm- [-cosx];" = —ms[%]+ cos{0) = -0+ 1= 1

i

44 APPLICATION OF DEFINITE INTEGRAL : CALCULATION OF AREA OF A

CURVE
From graph shown in figure if we divide whole area in infinitely small sirips of dx width. We take

& slrip al x position of dx widlh. Small area of thiz atrip da = ) dx
f(x)

-

a K
Sao, the tola) area between the curve and x-a0s

B
= sum of area of all strips =If{:}dx
L]

Let f(x} = 0 be confinuows on [a, b). The area of the region between the graph of 1 and the
H-anis is

A= J' ® fjdx
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———— Solved Exvamples

Example 56.
Solution :

Using an area o evaluate a definite integral _{:Jl:dﬂ O<a<b

We skatch the region under the curve y = x, a = x < b (figure) and see thal it is a trapezoid with
height (b = a) and bases a and b. Tha value of the integral is the area of this trapezoid ;

3
..
sl A
y=x
b
a—-
a
o a i
teba —
The region in Example
b a:b_b @&
de = (bh-a)- — -
Jurag mipoa) e S

Maotice that x/2 is an anfiderivative of x, further evidence of @ conneclion between
antiderivatives and summakion.
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