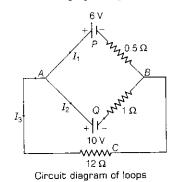
PRACTICE PAPER

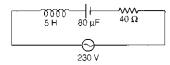

SUBJECT - PHYSICS

CLASS - XII

1. Sketch the electric field lines for a uniformly charged hollow cylinder as shown in the figure.

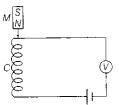
- 2. Magnetic field lines can be entirely confined within the core of a toroid but not within a straight solenoid, why?
- 3. What is the resistance offered by the capacitance to DC?
- 4. A concave mirror is held in water. What should be the change in focal length of the mirror?
- 5. A 3 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?
- Apply Kirchhoff's laws to the loops ACBPA and ACBQA to write the expressions for the currents I_1 , I_2 and I_3 in the network.

- 7. A carrier wave of peak voltage 12 V is used to transmit a message signal. What should be the peak voltage of the modulating signal, in order to have a modulation index 75%?
- **8.** Physics teacher, Mr. Sharma conducts viva-voce for board practical and asks the following two questions from every student.
 - I. Why a potentiometer be preferred over a voltmeter for measurement of emf of a cell?
 - II. Why should a six wire potentiometer be preferred over a three wire potentiometer?


The student A who could not answer many questions was from teacher ward. However another student B answered following questions correctly does not belong to teacher ward. Mr. Sharma awarded full marks to student B.

Answer the following questions on the basis of given informations:

- (i) Which values are displayed by Mr. Sharma?
- (ii) Write the answer of the questions asked by Mr. Sharma.
- **9.** Explain with the help of a neat and labelled diagram, the principle, construction and working of a transformer.


Of

The given circuit diagram shows a series *L-C-R* circuit connected to a variable frequency 230 V source.

- (i) Determine the source frequency which derives the circuit in resonance.
- (ii) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
- (iii) Determine the rms potential drop across the three elements of the circuit.

- **10.** (i) An electrostatic field line is a continuous curve, i.e. a field line cannot have sudden break. Why not?
 - (ii) Explain why two field lines never cross each other at any point?
 - (iii) A proton is placed in a uniform electric field directed along the positive X-axis. In which direction will it tend to move?
- **11.** (i) A current is set up in a long copper pipe. Is there magnetic field (a) inside, (b) outside the pipe?
 - (ii) Figure shown below shows a bar magnetM falling under the gravity through an air cored coil C.

- (a) Plot a graph showing variation of induced emf(E) with time(t).
- (b) What does the area enclosed by the E-t curve depict?

or

On a smooth plane inclined at 30° with the horizontal, a thin current carrying metallic rod is placed parallel to the horizontal ground. The plane is located in a uniform magnetic field of 0.15 T in the vertical direction. For what value of current can the rod be stationary? The mass per unit length of the rod is 0.03 kg m $^{-1}$.

12. Does the current in an AC circuit lag, lead or remain in phase with the voltage of frequency (f) applied to the circuit, when

(i)
$$f = f_r$$
 (ii) $f < f_r$ (iii) $f > f_r$

where, f_r is the resonant frequency?

13. Find an expression for the torque acting on an electric dipole placed in uniform electric field. A system of two charges, $q_A = 2.5 \times 10^{-7}$ C and $q_B = 2.5 \times 10^{-7}$ C located at points $A(0,0,-15\,\mathrm{cm})$ and $B(0,0,+15\,\mathrm{cm})$, respectively. Find the electric dipole moment of the system and the magnitude of the torque acting on it, when it is placed in a uniform electric field $5 \times 10^4\,\mathrm{NC}^{-1}$, making an angle 30° .

or

A capacitor of capacitance \mathcal{C} is charged fully by connecting it to a battery of emf \mathcal{E} . It is then disconnected from the battery. If the separation between the plates of the capacitor is now doubled, what will happen to

- (i) charge stored by the capacitor?
- (ii) potential difference across it?
- (iii) field strength between the plates?
- (iv) energy stored by the capacitor?
- (v) capacitance of the capacitor?